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Chapter 1: Concentration of sum of independent RV
Author: Roman Vershynin Learner: Weihao Li

Proposition 2.1 (Tails of the normal distribution). Let g ∼ N(0, 1). Then for all t > 0, we have


1

t
− 1

t3


· 1√

2π
e−t2/2 ≤ P{g ≥ t} ≤ 1

t
· 1√

2π
e−t2/2

In particular, for t ≥ 1 the tail is bounded by the density:

P{g ≥ t} ≤ 1√
2π

e−t2/2

Theorem 2.2 (Berry-Esseen central limit theorem).

ZN :=
SN − ESN
Var (SN )

=
1

σ
√
N

N

i=1

(Xi − µ)

for every N and every t ∈ R we have

|P {ZN ≥ t}− P{g ≥ t}| ≤ ρ√
N

Here ρ = E |X1 − µ|3 /σ3 and g ∼ N(0, 1).

Theorem 2.3 (Hoeffding inequality). Let X1, . . . , XN be independent symmetrical Bernoulli random vari-
ables, and a = (a1, . . . , aN ) ∈ RN . Then, for any t ≥ 0, we have

P


N

i=1

aiXi ≥ t


≤ exp


− t2

2a22



Theorem 2.4 (Hoeffding inequality for general bounded random variable). Let X1, . . . , XN be independent
random variables. Assume that Xi ∈ [mi,Mi] for every i. Then, for any t > 0, we have

P


N

i=1

(Xi − EXi) ≥ t


≤ exp


− 2t2
N

i=1 (Mi −mi)
2



Proposition 2.5 (subgaussian properties).

P{|X| ≥ t} ≤ 2 exp

−ct2/X2ψ2


for all t ≥ 0

XLp ≤ CXψ2

√
p for all p ≥ 1

E exp

X2/X2ψ2


≤ 2

if EX = 0 then E exp(λX) ≤ exp

Cλ2X2ψ2


for all λ ∈ R .

Proposition 2.6 (sum of independent sub-gaussian).



N

i=1

Xi



2

ψ2

≤ C

N

i=1

Xi2ψ2
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Theorem 2.7 (General Hoeffding inequality 1). Let X1, . . . , XN be independent, mean zero, sub-gaussian
random variables. Then, for every t ≥ 0, we have

P



N

i=1

Xi

 ≥ t


≤ 2 exp


− ct2
N

i=1 Xi2ψ2



Theorem 2.8 (General Hoeffding inequality 2). Let X1, . . . , XN be independent, mean zero, sub-gaussian
random variables, and a = (a1, . . . , aN ) ∈ RN . Then, for every t ≥ 0, we have

P



N

i=1

aiXi

 ≥ t


≤ 2 exp


− ct2

K2a22



where K = maxi Xiψ2

Theorem 2.9 (Khintchine’s inequality for p ≥ 2). Let X1, . . . , XN be independent sub-gaussian random
variables with zero means and unit variances, and let a = (a1, . . . , aN ) ∈ RN .


N

i=1

a2i

1/2

≤



N

i=1

aiXi


Lp

≤ CK
√
p


N

i=1

a2i

1/2

where K = maxi Xiψ2
and C is an absolute constant.

Theorem 2.10 (Khintchine’s inequality for p = 1). Same setting as 2.9

c(K)


N

i=1

a2i

1/2

≤



N

i=1

aiXi


L1

≤


N

i=1

a2i

1/2

Here K = maxi Xiψ2
and c(K) > 0 is a quantity which may depend only on K.

Definition 2.11 (sub-exponential norm).

Xψ1 = inf{t > 0 : E exp(|X|/t) ≤ 2}

Lemma 2.12 (Centering). If X is a sub-gaussian random variable then X − EX is sub-gaussian, too, and

X − EXψ2
≤ CXψ2

X − EXψ1 ≤ CXψ1

where C is an absolute constant.

Lemma 2.13 (sub-exponential is sub-gaussian square). A random variable X is sub-gaussian if and only if
X2 is sub-exponential. Moreover, X2


ψ1

= X2ψ2

Lemma 2.14 (product of sub-gaussian is sub-exponential). Let X and Y be sub-gaussian random variables.
Then XY is sub-exponential. Moreover,

XY ψ1 ≤ Xψ2Y ψ2

Theorem 2.15 (Bernstein’s inequality 1). Let X1, . . . , XN be independent, mean zero, sub-exponential
random variables. Then, for every t ≥ 0, we have

P



N

i=1

Xi

 ≥ t


≤ 2 exp


−cmin


t2

N
i=1 Xi2ψ1

,
t

maxi Xiψ1



where c > 0 is an absolute constant.
Remark: The reason we have ”min” here is: the bound for MGF does not hold for all lambda in case of

subexponential
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Theorem 2.16 (Bernstein’s inequality 2). Let X1, . . . , XN be independent, mean zero, sub-exponential
random variables, and a = (a1, . . . , aN ) ∈ RN . Then, for every t ≥ 0, we have

P



N

i=1

aiXi

 ≥ t


≤ 2 exp


−cmin


t2

K2a22
,

t

Ka∞



where K =max
i

Xiψ1

Theorem 2.17 (Bernstein’s inequality for bounded distributions). Let X1, . . . , XN be independent, mean
zero random variables, such that |Xi| ≤ K all i. Then, for every t ≥ 0, we have

P



N

i=1

Xi

 ≥ t


≤ 2 exp


− t2/2

σ2 +Kt/3



Here σ2 =
N

i=1 EX2
i is the variance of the sum.

Theorem 2.18 (bounded difference inequality). Theorem 2.9.1 (Bounded differences inequality). Let X1, . . . , XN

be independent random variables. Let f : Rn → R be a measurable function. Assume that the value of f(x)
can change by at most ci > 0 under an arbitrary change of a single coordinate of x ∈ Rn. Then, for any
t > 0, we have

P{f(X)− Ef(X) ≥ t} ≤ exp

− 2t2N

i=1 c2i



where X = (X1, . . . , Xn)

Theorem 2.19 (Bennett’s inequality). Let X1, . . . , XN be independent random variables. Assume that
|Xi − EXi| ≤ K almost surely for every i. Then, for any t > 0, we have

P


N

i=1

(Xi − EXi) ≥ t


≤ exp


− σ2

K2
h


Kt

σ2



where σ2 =
N

i=1 Var (Xi) is the variance of the sum, and h(u) = (1 + u) log(1 + u)− u.
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Chapter 2: Random vectors in high dimensions
Author: Roman Vershynin Learner: Weihao Li

Theorem 3.1 (Concentration of norm). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent,
sub-gaussian coordinates Xi that satisfy EX2

i = 1. Then

X

2 −

√
n

ψ2

≤ CK2

P
X2 −

√
n
 ≥ t


≤ 2 exp


− ct2

K4


for all t ≥ 0

where K = maxi Xiψ2
and C is an absolute constant.

Lemma 3.2 (Characteristic of isotropy). A random vector X in Rn is isotropic if and only if

E〈X,x〉2 = x22 for all x ∈ Rn.

Lemma 3.3. Let X be an isotropic random vector in Rn. Then

EX22 = n

Moreover, if X and Y are two independent isotropic random vectors in Rn, then

E〈X,Y 〉2 = n

Lemma 3.4 (Normal and spherical distributions). Let us represent g ∼ N (0, In) in polar form as

g = rθ

where r = g2 is the length and θ = g/g2 is the direction of g. Then
(a) The length r and direction θ are independent random variables.
(b) The direction θ is uniformly distributed on the unit sphere Sn−1.

Lemma 3.5 (Sub-gaussian distributions with independent coordinates). Let X = (X1, . . . , Xn) ∈ Rn be a
random vector with independent, mean zero, subgaussian coordinates Xi. Then X is a sub-gaussian random
vector, and

Xψ2
≤ Cmax

i≤n
Xiψ2

Theorem 3.6 (Uniform distribution on the sphere is sub-gaussian). Let X be a random vector uniformly
distributed on the Euclidean sphere in Rn with center at the origin and radius

√
n :

X ∼ Unif
√

nSn−1


Then X is sub-gaussian, and
Xψ2

≤ C

Remark: result also hold for Uniform distribution on the Euclidean ball Unif (B(0,
√
n)).

Theorem 3.7 (Projective limit theorem). X ∼ Unif
√

nSn−1

then for any fixed unit vector x, we have

〈X,x〉 → N(0, 1) in distribution as n → ∞.
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Theorem 3.8 (Grothendieck’s inequality). Consider an m× n matrix (aij) of real numbers. Assume that,
for any numbers xi, yj ∈ {−1, 1}, we have





i,j

aijxiyj


≤ 1

Then, for any Hilbert space H and any vectors ui, vj ∈ H satisfying ui = vj = 1, we have





i,j

aij 〈ui, vj〉


≤ K

where K ≤ 1.783 is an absolute constant.

Definition 3.9 (semidefinite programme). A semidefinite program is an optimization problem of the follow-
ing type:

maximize〈A,X〉 : X ≽ 0, 〈Bi, X〉 = bi for i = 1, . . . ,m

Here A and Bi are given n× n matrices and bi are given real numbers.

Theorem 3.10. Consider two optimization problem: for a given matrix A ∈ Rn×n

INT(A)= maximize

n

i,j=1

Aijxixj : xi = ±1 for i = 1, . . . , n

SDP (A) = maximize〈A,X〉 : X ≽ 0, Xii = 1 for i = 1, . . . , n

Then
INT(A) ≤ SDP(A) ≤ 2K · INT(A)

where K ≤ 1.783 is the constant in Grothendieck’s inequality.

Theorem 3.11 (Max-cut and SDP relaxation). Given graph G and adjacency matrix A

MAX−CUT(G) =
1

4
max






n

i,j=1

Aij (1− xixj) : xi = ±1 for all i






SDP(G) :=
1

4
max






n

i,j=1

Aij (1− 〈Xi, Xj〉) : Xi ∈ Rn, Xi2 = 1 for all i






Let x = (xi) be the result of a randomized rounding of the solution (Xi) of the semidefinite program, which
means that

g ∼ N (0, In)
xi := sign 〈Xi, g〉 , i = 1, . . . , n

Then we have
ECUT(G, x) ≥ 0.878 SDP(G) ≥ 0.878 MAX-CUT (G)

Lemma 3.12 (Grothendieck’s identity). Consider a random vector g ∼ N (0, In). Then, for any fixed
vectors u, v ∈ Sn−1, we have

E sign〈g, u〉 sign〈g, v〉 = 2

π
arcsin〈u, v〉
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Definition 4.1 (operator norm quadratic form).

A = max
x∈Sn−1,y∈Sm−1

〈Ax, y〉

Lemma 4.2 (Approximate isometry). Let A be an m× n matrix and δ > 0. Suppose that
A⊤A− In

 ≤ max

δ, δ2


.

Then
(1− δ)x2 ≤ Ax2 ≤ (1 + δ)x2 for all x ∈ Rn.

Consequently, all singular values of A are between 1− δ and 1 + δ :

1− δ ≤ sn(A) ≤ s1(A) ≤ 1 + δ .

Definition 4.3 (packing number). A subset N of a metric space (T, d) is ε -separated if d(x, y) > ε for all
distinct points x, y ∈ N . The largest possible cardinality of an ε -separated subset of a given set K ⊂ T is
called the packing number of K and is denoted P(K, d, ε).

Lemma 4.4 (Nets from separated sets). Let N be a maximal 2ε -separated subset of K. Then N is an ε-net
of K.

Lemma 4.5 (Equivalence of covering and packing numbers). For any set K ⊂ T and any ε > 0, we have

P(K, d, 2ε) ≤ N (K, d, ε) ≤ P(K, d, ε)

Proposition 4.6 (Covering numbers and volume). Let K be a subset of Rn and ε > 0. Then

|K|
|εBn

2 |
≤ N (K, ε) ≤ P(K, ε) ≤ |(K + (ε/2)Bn

2 )|
|(ε/2)Bn

2 |

Corollary 4.7 (Covering numbers of the Euclidean ball).


1

ε

n

≤ N (Bn
2 , ε) ≤


2

ε
+ 1

n

.

The same upper bound is true for the unit Euclidean sphere Sn−1.

Lemma 4.8 (Computing the operator norm on a net). Let A be an m× n matrix and ε ∈ [0, 1). Then, for
any ε-net N of the sphere Sn−1, we have

sup
x∈N

Ax2 ≤ A ≤ 1

1− ε
· sup
x∈N

Ax2

Theorem 4.9 (Norm of matrices with sub-gaussian entries). Let A be an m× n random matrix whose
entries Aij are independent, mean zero, sub-gaussian random variables. Then, for any t > 0 we have 6

A ≤ CK(
√
m+

√
n+ t)

with probability at least 1− 2 exp

−t2


. Here K = maxi,j Aijψ2

.
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Corollary 4.10 (Norm of symmetric matrices with sub-gaussian entries). Let A be an n × n symmetric
random matrix whose entries Aij on and above the diagonal are independent, mean zero, sub-gaussian random
variables. Then, for any t > 0 we have

A ≤ CK(
√
n+ t)

with probability at least 1− 4 exp

−t2


. Here K = maxi,j Aijψ2

.

Theorem 4.11 (Weyl’s inequality). For any symmetric matrices S and T with the same dimensions, we
have

max
i

|λi(S)− λi(T )| ≤ S − T

Theorem 4.12 (Davis Kahan). Let S and T be symmetric matrices with the same dimensions. Fix i and
assume that the i-th largest eigenvalue of S is well separated from the rest of the spectrum:

min
j:j ∕=i

|λi(S)− λj(S)| = δ > 0

Then the angle between the eigenvectors of S and T corresponding to the i-th largest eigenvalues (as a number
between 0 and π/2) satisfies

sin∠ (vi(S), vi(T )) ≤
2S − T

δ

and

∃θ ∈ {−1, 1} : vi(S)− θvi(T )2 ≤ 23/2S − T
δ

Theorem 4.13 (Two-sided bound on sub-gaussian matrices, not sharp). Let A be an m× n matrix whose
rows Ai are independent, mean zero, sub-gaussian isotropic random vectors in Rn. Then for any t ≥ 0 we
have √

m− CK2(
√
n+ t) ≤ sn(A) ≤ s1(A) ≤

√
m+ CK2(

√
n+ t)

with probability at least 1− 2 exp

−t2


. Here K = maxi Aiψ2

.

Theorem 4.14 (covariance estimation). Let X be a sub-gaussian random vector in Rn. More precisely,
assume that there exists K ≥ 1 such that

〈X,x〉ψ2 ≤ K〈X,x〉L2 for any x ∈ Rn.

Then, for every positive integer m, we have

E Σm − Σ ≤ CK2


n

m
+

n

m


Σ

OR

Σm − Σ ≤ CK2


n+ u

m
+

n+ u

m


Σ

with probability at least 1− 2e−u.
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Theorem 5.1 (Concentration of Lipschitz functions on the sphere). Consider a random vector X ∼
Unif

√
nSn−1


, i.e. X is uniformly distributed on the Euclidean sphere of radius

√
n. Consider a Lips-

chitz function f :
√
nSn−1 → R. Then

f(X)− Ef(X)ψ2 ≤ CfLip

P{|f(X)− Ef(X)| ≥ t} ≤ 2 exp


− ct2

f2Lip



Theorem 5.2 (Isoperimetric inequality on Rn). Among all subsets A ⊂ Rn with given volume, the Euclidean
balls have minimal area. Moreover, for any ε > 0, the Euclidean balls minimize the volume of the ε-
neighborhood of A, defined as 2

Aε := {x ∈ Rn : ∃y ∈ A such that x− y2 ≤ ε} = A+ εBn
2

Theorem 5.3 (Isoperimetric inequality on the sphere). Let ε > 0. Then, among all sets A ⊂ Sn−1 with
given area σn−1(A), the spherical caps minimize the area of the neighborhood σn−1 (Aε), where

Aε :=

x ∈ Sn−1 : ∃y ∈ A such that x− y2 ≤ ε



Lemma 5.4 (blow-up). Let A be a subset of the sphere
√
nSn−1, and let σ denote the normalized area on

that sphere. If σ(A) ≥ 1/2, then, for every t ≥ 0,

σ (At) ≥ 1− 2 exp

−ct2



Lemma 5.5 (Concentration about expectation and median are equivalent). Consider a random variable Z
with median M . Show that

cZ − EZψ2 ≤ Z −Mψ2 ≤ CZ − EZψ2

Theorem 5.6 (Gaussian isoperimetric inequality). Let ε > 0. Then, among all sets A ⊂ Rn with fixed
Gaussian measure γn(A), the half spaces minimize the Gaussian measure of the neighborhood γn (Aε) .

Theorem 5.7 (Gaussian concentration). Consider a random vector X ∼ N (0, In) and a Lipschitz function
f : Rn → R (with respect to the Euclidean metric). Then

f(X)− Ef(X)ψ2 ≤ CfLip

Theorem 5.8 (Concentration on the Hamming cube). Consider a random vector X ∼ Unif {0, 1}n. (Thus,
the coordinates of X are independent Ber(1/2) random variables.) Consider a function f : {0, 1}n → R.
Then

f(X)− Ef(X)ψ2 ≤ CfLip√
n

Theorem 5.9 (Concentration on the continuous cube). Consider a random vector X ∼ Unif ([0, 1]n) . (Thus,
the coordinates of X are independent random variables uniformly distributed on [0, 1].) Consider a Lipschitz
function f : [0, 1]n → R. (The Lipschitz norm is with respect to the Euclidean distance.) Then

f(X)− Ef(X)ψ2 ≤ CfLip
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Theorem 5.10 (Concentration on the Euclidean ball). Consider the random vector X ∼ Unif (
√
nBn

2 ) .
Consider a Lipschitz function f :

√
nBn

2 → R. (The Lipschitz norm is with respect to the Euclidean distance.)
Then

f(X)− Ef(X)ψ2
≤ CfLip

Theorem 5.11 (Concentration of concave density). Consider a random vector X in Rn whose density
has the form f(x) = e−U(x) for some function U : Rn → R. Assume there exists κ > 0 such that 12

HessU(x) ≽ κIn for all x ∈ Rn Then any Lipschitz function f : Rn → R satisfies

f(X)− Ef(X)ψ2 ≤ CfLip√
κ

Theorem 5.12 (Talagrand’s concentration inequality). Consider a random vector X = (X1, . . . , Xn) whose
coordinates are independent and satisfy

|Xi| ≤ 1 almost surely.

Then for any convex Lipschitz function f : [0, 1]n → R

f(X)− Ef(X)ψ2 ≤ CfLip√
κ

Remark: In particular, Talagrand’s concentration inequality holds for any norm on Rn.

Theorem 5.13 (Johnson-Lindenstrauss Lemma). Let X be a set of N points in Rn and ε > 0. Assume that

m ≥

C/ε2


logN

Consider a random m -dimensional subspace E in Rn uniformly distributed in Gn,m. Denote the orthogonal
projection onto E by P. Then, with probability at least 1− 2 exp


−cε2m


, the scaled projection

Q :=


n

m
P

is an approximate isometry on X :

(1− ε)x− y2 ≤ Qx−Qy2 ≤ (1 + ε)x− y2 for all x, y ∈ X

Remark: Let A be an m × n random matrix whose rows are independent, mean zero, subgaussian isotropic
random vectors in Rn. Show that the conclusion of JohnsonLindenstrauss lemma holds for Q = (1/

√
n)A.

Lemma 5.14 (Random projection). Let P be a projection in Rn onto a random m -dimensional subspace
uniformly distributed in Gn,m. Let z ∈ Rn be a (fixed) point and ε > 0. Then:
(a)


EPz22

1/2
=


m

n
z2

(b) With probability at least 1− 2 exp

−cε2m


, we have

(1− ε)


m

n
z2 ≤ Pz2 ≤ (1 + ε)


m

n
z2

Theorem 5.15 (Matrix Bernstein’s inequality). Let X1, . . . , XN be independent, mean zero, n×n symmetric
random matrices, such that Xi ≤ K almost surely for all i. Then, for every t ≥ 0, we have

P



N

i=1

Xi

 ≥ t


≤ 2n exp


− t2/2

σ2 +Kt/3
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Here σ2 =

N

i=1 EX2
i

 is the norm of the matrix variance of the sum. In particular, we can express this

bound as the mixture of sub-gaussian and sub-exponential tail, just like in the scalar Bernstein’s inequality:

P



N

i=1

Xi

 ≥ t


≤ 2n exp


−c ·min


t2

σ2
,
t

K



Remark: max(a, b) ≍ a+ b
For rectangular matrix m× n,

P



N

i=1

Xi

 ≥ t


≤ 2(m+ n) exp


− t2/2

σ2 +Kt/3



where

σ2 = max



N

i=1

EX⊤
i Xi

 ,



N

i=1

EXiX
⊤
i





Theorem 5.16 (Golden-Thompson inequality). For any n× n symmetric matrices A and B, we have

tr

eA+B


≤ tr


eAeB



Unfortunately, Goldon-Thpmpson inequality does not hold for three or more matrices: in general, the in-
equality tr


eA+B+C


≤ tr


eAeBeC


may fail.

Theorem 5.17 (Lieb’s inequality). Let H be an n× n symmetric matrix. Define the function on matrices

f(X) := tr exp(H + logX)

Then f is concave on the space on positive definite n× n symmetric matrices.

Theorem 5.18 (Lieb’s inequality for random matrices). Let H be a fixed n×n symmetric matrix and Z be
a random n× n symmetric matrix. Then

E tr exp(H + Z) ≤ tr exp

H + logEeZ



Lemma 5.19 (Moment generating function). Let X be an n× n symmetric mean zero random matrix such
that X ≤ K almost surely. Then

E exp(λX) ≼ exp

g(λ)EX2


where g(λ) =

λ2/2

1− |λ|K/3

provided that |λ| < 3/K.

Theorem 5.20 (Matrix Bernstein’s inequality: expectation). Let X1, . . . , XN be independent, mean zero,
n × n symmetric random matrices, such that Xi ≤ K almost surely for all i. Deduce from Bernstein’s
inequality that

E



N

i=1

Xi

 ≲


N

i=1

EX2
i



1/2 
1 + log n+K(1 + log n).

Theorem 5.21 (Matrix Hoeffding’s inequality). Let ε1, . . . , εn be independent symmetric Bernoulli random
variables and let A1, . . . , AN be symmetric n × n matrices (deterministic). Prove that, for any t ≥ 0, we
have

P



N

i=1

εiAi

 ≥ t


≤ 2n exp


−t2/2σ2



where σ2 =

N

i=1 A
2
i

.
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Theorem 5.22 (Matrix Khintchine’s inequality). Let ε1, . . . , εN be independent symmetric Bernoulli random
variables and let A1, . . . , AN be symmetric n× n matrices (deterministic).

E



N

i=1

εiAi

 ≤ C

1 + log n



N

i=1

A2
i



1/2

More generally, prove that for every p ∈ [1,∞) we have


E



N

i=1

εiAi



p1/p

≤ C

p+ log n



N

i=1

A2
i



1/2

Theorem 5.23 (General covariance estimation). Let X be a random vector in Rn, n ≥ 2. Assume that for
some K ≥ 1,

X2 ≤ K

EX22

1/2
almost surely

Then, for every positive integer m, we have

E Σm − Σ ≤ C


K2n log n

m
+

K2n log n

m


Σ

Theorem 5.24 (Low dimension covariance estimation). Intrinsic dimension r = tr(Σ)
Σ

E Σm − Σ ≤ C


K2r log n

m
+

K2r log n

m


Σ

In particular, this stronger bound implies that a sample of size

m ≍ ε−2r log n

is sufficient to estimate the covariance matrix.
Tail bound:

Σm − Σ ≤ C


K2r(log n+ u)

m
+

K2r(log n+ u)

m


Σ

with probability at least 1− 2e−u. Here r = tr(Σ)/Σ ≤ n.

13



6 Chapter 5: Quadratic forms, symmetrization and contraction

High dimension probability in Data science

Chapter 5: Quadratic forms, symmetrization and contraction
Author: Roman Vershynin Learner: Weihao Li

Lemma 6.1. Let Y and Z be independent random variables such that EZ = 0. Then, for every convex
function F , one has

EF (Y ) ≤ EF (Y + Z)

Theorem 6.2 (Decoupling). Let A be an n × n, diagonal-free matrix (i.e. the diagonal entries of A equal
zero). Let X = (X1, . . . , Xn) be a random vector with independent mean zero coordinates Xi. Then, for
every convex function F : R → R, one has

EF

X⊤AX


≤ EF


4X⊤AX ′

where X ′ is an independent copy of X.
Stronger version: for any square matrix A = (aij) we have

EF






i,j:i ∕=j

aijXiXj



 ≤ EF



4


i,j

aijXiX
′
j





Theorem 6.3 (Hanson-Wright inequality). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with indepen-
dent, mean zero, sub-gaussian coordinates. Let A be an n× n matrix. Then, for every t ≥ 0, we have

P
X⊤AX − EX⊤AX

 ≥ t

≤ 2 exp


−cmin


t2

K4A2F
,

t

K2A



where K = maxi Xiψ2

Lemma 6.4 (MGF of Gaussian chaos). Let X,X ′ ∼ N (0, In) be independent and let A = (aij) be an n× n
matrix. Then

E exp

λX⊤AX ′ ≤ exp


Cλ2A2F



for all λ satisfying |λ| ≤ c/A.

Lemma 6.5 (Comparison). Consider independent, mean zero, sub-gaussian random vectors X,X ′ in Rn

with Xψ2 ≤ K and X ′ψ2
≤ K. Consider also independent random vectors g, g′ ∼ N (0, In) . Let A be an

n× n matrix. Then
E exp


λX⊤AX ′ ≤ E exp


CK2λg⊤Ag′



for any λ ∈ R.

Theorem 6.6 (Higher-dimensional Hanson-Wright inequality). Let X1, . . . , Xn be independent, mean zero,
sub-gaussian random vectors in Rd. Let A = (aij) be an n× n matrix. Prove that for every t ≥ 0, we have

P








n

i,j:i ∕=j

aij 〈Xi, Xj〉


≥ t




 ≤ 2 exp


−cmin


t2

K4dA2F
,

t

K2A



where K = maxi Xiψ2
.
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Theorem 6.7 (Concentration of random vectors). Let B be an m×n matrix, and let X = (X1, . . . , Xn) ∈ Rn

be a random vector with independent, mean zero, unit variance, sub-gaussian coordinates. Then

BX 2−B F ψ2
≤ CK2B

where K = maxi Xiψ2

Lemma 6.8 (Symmetrization). Let X1, . . . , XN be independent, mean zero random vectors in a normed
space. Then

1

2
E



N

i=1

εiXi

 ≤ E



N

i=1

Xi

 ≤ 2E



N

i=1

εiXi

 .

Lemma 6.9 (Symmetrization general). Let F : R+ → R be an increasing, convex function. Show that the
same inequalities in Lemma 6.8 hold if the norm  ·  is replaced with F ( · ), namely

EF


1

2



N

i=1

εiXi




≤ EF



N

i=1

Xi




≤ EF


2



N

i=1

εiXi





Theorem 6.10 (Norms of random matrices with non-i.i.d. entries). Let A be an n× n symmetric random
matrix whose entries on and above the diagonal are independent, mean zero random variables. Then

EA ≤ C

log n · Emax

i
Ai2

where Ai denote the rows of A.
Remark: do not confuse with norm for gaussian matrix, this is a general result, hence not sharp.
For rectangular matrix:

EA ≤ C

log(m+ n)


Emax

i
Ai2 + Emax

j

Aj

2



where Ai and Aj denote the rows and columns of A, respectively.

Theorem 6.11 (Matrix completion). Rank(X) = r, r ≪ n, p = m/n2

Yij := δijXij where δij ∼ Ber(p) are independent.

we are shown m entries of X on average. Let X̂ be a best rank r approximation to p−1Y . Then

E
1

n
X̂ −XF ≤ C


rn log n

m
X∞

as long as m ≥ n log n. Here X∞ = maxi,j |Xij | is the maximum magnitude of the entries of X.

Theorem 6.12 (Contraction Principle). Let ε1, ε2, ε3, . . . a sequence of independent symmetric Bernoulli
random variables, x1, . . . , xN be (deterministic) vectors in some normed space, and let a = (a1, . . . , an) ∈ Rn.
Then

E



N

i=1

aiεixi

 ≤ a∞ · E



N

i=1

εixi



Lemma 6.13 (Symmetrization with Gaussians). Let X1, . . . , XN be independent, mean zero random vectors
in a normed space. Let g1, . . . , gN ∼ N(0, 1) be independent Gaussian random variables, which are also
independent of Xi. Then

c√
logN

E



N

i=1

giXi

 ≤ E



N

i=1

Xi

 ≤ 3E



N

i=1

giXi

 .
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Lemma 6.14 (Talagrand’s contraction principle). Consider a bounded subset T ⊂ Rn, and let ε1, . . . , εn be
independent symmetric Bernoulli random variables. Let φi : R → R be contractions, i.e. Lipschitz functions
with φiLip ≤ 1. Then

E sup
t∈T

n

i=1

εiφi (ti) ≤ E sup
t∈T

n

i=1

εiti

Lemma 6.15 (Gaussian contraction principle). Consider a bounded subset T ⊂ Rn, and let g1, . . . , gn be
independent N(0, 1). Let φi : R → R be contractions, i.e. Lipschitz functions with φiLip ≤ 1. Then

E sup
t∈T

n

i=1

giφi (ti) ≤ E sup
t∈T

n

i=1

giti
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Definition 7.1. Increments of the random process are defined as

d(t, s) := Xt −XsL2 =

E (Xt −Xs)

2
1/2

, t, s ∈ T

Lemma 7.2 (Symmetrization for random processes). Let X1(t), . . . , XN (t) be N independent, mean zero
random processes indexed by points t ∈ T. Let ε1, . . . , εN be independent symmetric Bernoulli random vari-
ables. Prove that

1

2
E sup

t∈T

N

i=1

εiXi(t) ≤ E sup
t∈T

N

i=1

Xi(t) ≤ 2E sup
t∈T

N

i=1

εiXi(t)

Theorem 7.3 (Slepian’s inequality). Let (Xt)t∈T and (Yt)t∈T be two mean zero Gaussian processes. Assume
that for all t, s ∈ T , we have

EX2
t = EY 2

t and E (Xt −Xs)
2 ≤ E (Yt − Ys)

2

Then for every τ ∈ R we have

P

sup
t∈T

Xt ≥ τ


≤ P


sup
t∈T

Yt ≥ τ



Consequently,
E sup

t∈T
Xt ≤ E sup

t∈T
Yt

Whenever the tail comparison inequality (7.3) holds, we say that the random variable X is stochastically
dominated by the random variable Y .

Lemma 7.4 (Stein identity). • If X ∼ N

0,σ2


, for any differentiable function f : R → R we have

EXf(X) = σ2Ef ′(X)

• Multivariate stein identity: Let X ∼ N(0,Σ). Then for any differentiable function f : Rn → R we
have

EXf(X) = Σ · E∇f(X)

⇐⇒ EXif(X) =

n

j=1

ΣijE
∂f

∂xj
(X), i = 1, . . . , n

Lemma 7.5 (Gaussian interpolation). Consider two independent Gaussian random vectors X ∼ N

0,ΣX



and Y ∼ N

0,ΣY


. Define the interpolation Gaussian vector

Z(u) :=
√
uX +

√
1− uY, u ∈ [0, 1]

Then for any twice-differentiable function f : Rn → R, we have

d

du
Ef(Z(u)) =

1

2

n

i,j=1


ΣX

ij − ΣY
ij


E


∂2f

∂xi∂xj
(Z(u))
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Lemma 7.6 (Slepian’s inequality, functional form). Consider two mean zero Gaussian random vectors X
and Y in Rn. Assume that for all i, j = 1, . . . , n, we have

EX2
i = EY 2

i and E (Xi −Xj)
2 ≤ E (Yi − Yj)

2

Consider a twice-differentiable function f : Rn → R such that

∂2f

∂xi∂xj
≥ 0 for all i ∕= j

Then
Ef(X) ≥ Ef(Y )

Theorem 7.7 (Sudakov-Fernique’s inequality). Let (Xt)t∈T and (Yt)t∈T be two mean zero Gaussian pro-
cesses. Assume that for all t, s ∈ T , we have

E (Xt −Xs)
2 ≤ E (Yt − Ys)

2

Then
E sup

t∈T
Xt ≤ E sup

t∈T
Yt

Theorem 7.8 (Gordon’s inequality). Let (Xut)u∈U,t∈T and Y = (Yut)u∈U,t∈T be two mean zero Gaussian
processes indexed by pairs of points (u, t) in a product set U × T . Assume that we have

EX2
ut = EY 2

ut, E (Xut −Xus)
2 ≤ E (Yut − Yus)

2
for all u, t, s

E (Xut −Xvs)
2 ≥ E (Yut − Yvs)

2
for all u ∕= v and all t, s Then for every τ ≥ 0 we have

P

inf
u∈U

sup
t∈T

Xut ≥ τ


≤ P


inf
u∈U

sup
t∈T

Yut ≥ τ



Consequently,
E inf

u∈U
sup
t∈T

Xut ≤ E inf
u∈U

sup
t∈T

Yut

Theorem 7.9 (Norms of Gaussian random matrices). Let A be an m× n matrix with independent N(0, 1)
entries. Then

EA ≤
√
m+

√
n

P{A ≥
√
m+

√
n+ t} ≤ 2 exp


−ct2



Esn(A) ≥
√
m−

√
n

Lemma 7.10 (Symmetric random matrix). Gaussian orthogonal ensemble (GOE): diagonal entries are
independent N(0, 2) random variables.

EA ≤ 2
√
n

tail bound
P{A ≥ 2

√
n+ t} ≤ 2 exp


−ct2



Theorem 7.11 (Sudakov’s minoration inequality). Let (Xt)t∈T be a mean zero Gaussian process. Then,
for any ε ≥ 0, we have

E sup
t∈T

Xt ≥ cε

logN (T, d, ε)

where d(t, s) := Xt −XsL2 =

E (Xt −Xs)

2
1/2

.
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Corollary 7.12 (Sudakov’s minoration inequality in Rn). Let T ⊂ Rn. Then, for any ε > 0, we have

E sup
t∈T

〈g, t〉 ≥ cε

logN (T, ε)

Here N (T, ε) is the covering number of T by Euclidean balls − the smallest number of Euclidean balls with
radii ε and centers in T that cover T .

Theorem 7.13. x1, . . . , xN denote the vertices of P

E sup
t∈P

〈g, t〉 = E sup
i≤N

〈g, xi〉

The equality here follows since the maximum of the linear function on the convex set P is attained at an
extreme point, i.e. at a vertex of P.

Proposition 7.14 (Gaussian width). • w(T ) is finite if and only if T is bounded.

• Gaussian width is invariant under affine unitary transformations. Thus, for every orthogonal matrix
U and any vector y, we have

w(UT + y) = w(T )

• Gaussian width is invariant under taking convex hulls. Thus,

w(conv(T )) = w(T )

• Gaussian width respects Minkowski addition of sets and scaling. Thus, for T, S ⊂ Rn and a ∈ R we
have

w(T + S) = w(T ) + w(S); w(aT ) = |a|w(T )

• We have

w(T ) =
1

2
w(T − T ) =

1

2
E sup

x,y∈T
〈g, x− y〉

• (Gaussian width and diameter). We have

1√
2π

· diam(T ) ≤ w(T ) ≤
√
n

2
· diam(T )

• Gaussian width under linear transformations

•
w(AT ) ≤ Aw(T )

Definition 7.15 (Spherical width). The spherical width of a subset T ⊂ Rn is defined as

ws(T ) := E sup
x∈T

〈θ, x〉 where θ ∼ Unif

Sn−1



Lemma 7.16 (Gaussian vs. spherical widths). We have

(
√
n− C)ws(T ) ≤ w(T ) ≤ (

√
n+ C)ws(T )

Definition 7.17 (Squared gaussian width).

h(T )2 := E sup
t∈T

〈g, t〉2, where g ∼ N (0, In)
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Lemma 7.18.
w(T − T ) ≤ h(T − T ) ≤ w(T − T ) + C1 diam(T ) ≤ Cw(T − T )

In particular, we have
2w(T ) ≤ h(T − T ) ≤ 2Cw(T )

Definition 7.19 (stable dimension).

d(T ) :=
h(T − T )2

diam(T )2
≍ w(T )2

diam(T )2

The stable dimension is always bounded by the algebraic dimension: d(T ) ≤ dim(T )

Definition 7.20 (Stable rank).

r(A) :=
A2F
A2

Theorem 7.21 (Sizes of random projections of sets). Consider a bounded set T ⊂ Rn. Let P be a projection
in Rn onto a random m -dimensional subspace E ∼ Unif (Gn,m) . Then, with probability at least 1− 2e−m,
we have

diam(PT ) ≤ C


ws(T ) +


m

n
diam(T )


.

Optimal:

E diam(PT ) ≥ c


ws(T ) +


m

n
diam(T )



Figure 1: The diameter of a random m -dimensional projection of a set T as a function of m.
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Definition 8.1 (Sub-gaussian increment). Consider a random process (Xt)t∈T on a metric space (T, d).
We say that the process has sub-gaussian increments if there exists K ≥ 0 such that

Xt −Xsψ2
≤ Kd(t, s) for all t, s ∈ T

where d(t, s) := Xt −XsL2 , t, s ∈ T

Theorem 8.2 (Dudley’s integral inequality). Let (Xt)t∈T be a mean zero random process on a metric space
(T, d) with sub-gaussian increments defined above. Then

E sup
t∈T

Xt ≤ CK

 ∞

0


logN (T, d, ε)dε

Remark:

E sup
t∈T

Xt ≤ CK

 diam(T )

0


logN (T, d, ε)dε

Theorem 8.3 (Discrete Dudley’s inequality). Let (Xt)t∈T be a mean zero random process on a metric space
(T, d) with sub-gaussian increments defined above. Then

E sup
t∈T

Xt ≤ CK


k∈Z
2−k


logN (T, d, 2−k)

Theorem 8.4 (Dudley’s integral inequality: tail bound). Let (Xt)t∈T be a random process on a metric space
(T, d) with sub-gaussian increments as in (8.1). Then, for every u ≥ 0, the event

sup
t,s∈T

|Xt −Xs| ≤ CK

 ∞

0


logN (T, d, ε)dε+ u · diam(T )



holds with probability at least 1− 2 exp

−u2


.

Theorem 8.5 (Dudley’s inequality for sets in Rn). For any set T ⊂ Rn, we have

w(T ) ≤ C

 ∞

0


logN (T, ε)dε

For example:

w (Bn
2 ) ≤ C

 1

0


n log

3

ε
dε ≤ C1

√
n

Theorem 8.6 (Uniform law of large number). F := {f : [0, 1] → R, fLip ≤ L}. Let X,X1, X2, . . . , Xn be
i.i.d. random variables taking values in [0, 1]. Then

E sup
f∈F


1

n

n

i=1

f (Xi)− Ef(X)

 ≤
CL√
n
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Definition 8.7 (VC dimension). Consider a class F of Boolean functions on some domain Ω. We say that
a subset Λ ⊆ Ω is shattered by F if any function g : Λ → {0, 1} can be obtained by restricting some function
f ∈ F onto Λ. The V C dimension of F , denoted vc(F), is the largest cardinality 1 of a subset Λ ⊆ Ω
shattered by F .

Lemma 8.8 (Pajor’s Lemma). Let F be a class of Boolean functions on a finite set Ω. Then

|F| ≤| {Λ ⊆ Ω : Λ is shattered by F}

We include the empty set Λ = ∅ in the counting on the right side.

Theorem 8.9 (Sauer-Shelah Lemma). Let F be a class of Boolean functions on an n -point set Ω. Then

|F| ≤
d

k=0


n
k


≤

en
d

d

where d = vc(F).

Definition 8.10 (distance on probability measure µ).

d(f, g) = f − gL2(µ) =



Ω

|f − g|2dµ
1/2

, f, g ∈ F

Theorem 8.11 (Covering numbers via VC dimension). Let F be a class of Boolean functions on a probability
space (Ω,Σ, µ). Then, for every ε ∈ (0, 1), we have

N

F , L2(µ), ε


≤


2

ε

Cd

Lemma 8.12 (Dimension reduction). Let F be a class of N Boolean functions on a probability space
(Ω,Σ, µ). Assume that all functions in F are ε -separated, that is

f − gL2(µ) > ε for all distinct f, g ∈ F .

Then there exist a number n ≤ Cε−4 logN and an n -point subset Ωn ⊂ Ω such that the uniform probability
measure µn on Ωn satisfies

f − gL2(µn) >
ε

2
for all distinct f, g ∈ F .

Theorem 8.13 (Empirical processes via VC dimension). Let F be a class of Boolean functions on a prob-
ability space (Ω,Σ, µ) with finite V C dimension vc(F) ≥ 1. Let X,X1, X2, . . . , Xn be independent random
points in Ω distributed according to the law µ. Then

E sup
f∈F


1

n

n

i=1

f (Xi)− Ef(X)

 ≤ C


vc(F)

n

Lemma 8.14 (Symmetrization for empirical processes). Let F be a class of functions on a probability space
(Ω,Σ, µ). Let X,X1, X2, . . . , Xn be random points in Ω distributed according to the law µ. Prove that

E sup
f∈F


1

n

n

i=1

f (Xi)− Ef(X)

 ≤ 2E sup
f∈F


1

n

n

i=1

εif (Xi)



where ε1, ε2, . . . are independent symmetric Bernoulli random variables (which are also independent of
X1, X2, . . .).
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Theorem 8.15 (Glivenko-Cantelli Theorem: non-asymptotic). Let X1, . . . , Xn be independent random vari-
ables with common cumulative distribution function F . Then

E Fn − F∞ = E sup
x∈R

|Fn(x)− F (x)| ≤ C√
n

Definition 8.16. Ideally, we would like to find a function f∗ from the hypothesis space F which would
minimize the risk R(f) = E(f(X)− T (X))2, that is

f∗ := argmin
f∈F

R(f)

The empirical risk for a function f : Ω → R is defined as

Rn(f) :=
1

n

n

i=1

(f (Xi)− T (Xi))
2
.

f∗
n := argmin

f∈F
Rn(f)

The main question is: how large is the excess risk:

R (f∗
n)−R (f∗)

Theorem 8.17 (Excess risk via VC dimension). Assume that the target T is a Boolean function, and the
hypothesis space F is a class of Boolean functions with finite V C dimension vc(F) ≥ 1. Then

ER (f∗
n) ≤ R (f∗) + C


vc(F)

n

Lemma 8.18 (Excess risk via uniform deviations). We have

R (f∗
n)−R (f∗) ≤ 2 sup

f∈F
|Rn(f)−R(f)|

pointwise.

Theorem 8.19 (Learning in the class of Lipschitz functions). Consider

F := {f : [0, 1] → R, fLip ≤ L}

and a target function T : [0, 1] → [0, 1].

• random process Xf := Rn(f)−R(f) has sub-gaussian increment

Xf −Xgψ2
≤ CL√

n
f − g∞ for all f, g ∈ F

•
E sup

f∈F
|Rn(f)−R(f)| ≤ C(L+ 1)√

n

•
R (f∗

n)−R (f∗) ≤ C(L+ 1)√
n

Definition 8.20. (Tk)
∞
k=0 is called an admissible sequence if

|T0| = 1, |Tk| ≤ 22
k

, k = 1, 2, . . .
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Definition 8.21 (Talagrand’s γ2 functional). Let (T, d) be a metric space. The γ2 functional of T is defined
as

γ2(T, d) = inf
(Tk)

sup
t∈T

∞

k=0

2k/2d (t, Tk)

where the infimum is with respect to all admissible sequences.

Theorem 8.22 (Generic chaining bound). Let (Xt)t∈T be a mean zero random process on a metric space
(T, d) with sub-gaussian increments . Then

E sup
t∈T

Xt ≤ CKγ2(T, d)

Theorem 8.23 (Generic chaining: tail bound). Let (Xt)t∈T be a random process on a metric space (T, d)
with sub-gaussian increments. Then, for every u ≥ 0, the event

sup
t,s∈T

|Xt −Xs| ≤ CK [γ2(T, d) + u · diam(T )]

holds with probability at least 1− 2 exp

−u2


.

Theorem 8.24 (Talagrand’s majorizing measure theorem). Let (Xt)t∈T be a mean zero Gaussian process
on a set T. Consider the canonical metric defined on T by (7.13), i.e. d(t, s) = Xt −XsL2 . Then

c · γ2(T, d) ≤ E sup
t∈T

Xt ≤ C · γ2(T, d)

Corollary 8.25 (Talagrand’s comparison inequality). Let (Xt)t∈T be a mean zero random process on a set
T and let (Yt)t∈T be a mean zero Gaussian process. Assume that for all t, s ∈ T , we have

Xt −Xsψ2
≤ K Yt − YsL2

Then
E sup

t∈T
Xt ≤ CKE sup

t∈T
Yt

Corollary 8.26 (Talagrand’s comparison inequality: geometric form). Let (Xx)x∈T be a mean zero random
process on a subset T ⊂ Rn. Assume that for all x, y ∈ T , we have

Xx −Xyψ2
≤ Kx− y2

Then
E sup

x∈T
Xx ≤ CKw(T )

Theorem 8.27 (Sub-gaussian Chevet’s inequality). Let A be an m × n random matrix whose entries Aij

are independent, mean zero, sub-gaussian random variables. Let T ⊂ Rn and S ⊂ Rm be arbitrary bounded
sets. Then

E sup
x∈T,y∈S

〈Ax, y〉 ≤ CK[w(T ) rad(S) + w(S) rad(T )]

where K = maxij Aijψ2
.
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Theorem 9.1 (Matrix deviation inequality). Let A be an m × n matrix whose rows Ai are independent,
isotropic and sub-gaussian random vectors in Rn. Then for any subset T ⊂ Rn, we have

E sup
x∈T

Ax2 −
√
mx2

 ≤ CK2γ(T )

Here γ(T ) is the Gaussian complexity, and K = maxi Aiψ2

Theorem 9.2 (Sub-gaussian increments). Let A be an m×n matrix whose rows Ai are independent, isotropic
and sub-gaussian random vectors in Rn. Then the random process

Xx := Ax2 −
√
mx2

has sub-gaussian increments, namely

Xx −Xyψ2
≤ CK2x− y2 for all x, y ∈ Rn.

Here K = maxi Aiψ2

Lemma 9.3. Let x, y ∈ Sn−1. Then

Ax 2−Ay 2ψ2
≤ CK2x− y2

Proposition 9.4 (Sizes of random projections of sets). Consider a bounded set T ⊂ Rn. Let A be an m×n
matrix whose rows Ai are independent, isotropic and sub-gaussian random vectors in Rn. Then the scaled
matrix

P :=
1√
n
A

(a ”sub-gaussian projection”) satisfies

E diam(PT ) ≤


m

n
diam(T ) + CK2ws(T )

Theorem 9.5 (Covariance estimation for lower-dimensional distributions). Let X be a sub-gaussian random
vector in Rn. More precisely, assume that there exists K ≥ 1 such that

〈X,x〉ψ2 ≤ K〈X,x〉L2 for any x ∈ Rn.

Then, for every positive integer m, we have

E Σm − Σ ≤ CK4


r

m
+

r

m


Σ

where r = tr(Σ)/Σ is the stable rank of Σ1/2.

Σm − Σ ≤ CK4


r + u

m
+

r + u

m


Σ

with probability at least 1− 2e−u.
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Proposition 9.6 (Additive Johnson-Lindenstrauss Lemma). Consider a set X ⊂ Rn. Let A be an m × n
matrix whose rows Ai are independent, isotropic and sub-gaussian random vectors in Rn. Then, with high
probability (say, 0.99), the scaled matrix

Q :=
1√
m
A

satisfies
x− y2 − δ ≤ Qx−Qy2 ≤ x− y2 + δ for all x, y ∈ X

where

δ =
CK2w(X )√

m

and K = maxi Aiψ2
.

Theorem 9.7 (M∗ bound). Consider a set T ⊂ Rn. Let A be an m×n matrix whose rows Ai are independent,
isotropic and sub-gaussian random vectors in Rn. Then the random subspace E = ker A satisfies

E diam(T ∩ E) ≤ CK2w(T )√
m

where K = maxi Aiψ2
.

Corollary 9.8 (Affine sections).

Emax
z∈Rn

diam (T ∩ Ez) ≤
CK2w(T )√

m

where Ez = z + kerA.

Theorem 9.9 (Escape theorem). Consider a set T ⊂ Sn−1. Let A be an m× n matrix whose rows Ai are
independent, isotropic and sub-gaussian random vectors in Rn. If

m ≥ CK4w(T )2

then the random subspace E = ker A satisfies

T ∩ E = ∅

with probability at least 1− 2 exp

−cm/K4


. Here K = maxi Aiψ2

.
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Theorem 10.1. Truth y = Ax, x ∈ T , optimization find x′ : y = Ax′, x′ ∈ T . Suppose the rows Ai

of A are independent, isotropic and subgaussian random vectors. Then any solution x of the optimization
satisfies

Ex− x2 ≤ CK2w(T )√
m

where K = maxi Aiψ2

Corollary 10.2 (Sparse recovery: guarantees). Consider optimization

Find x′ : y = Ax′, x′1 ≤
√
s

Assume the unknown s-sparse signal x ∈ Rn satisfies x2 ≤ 1. Then x can be approximately recovered from
the random measurement vector y = Ax by a solution x of the optimization. The recovery error satisfies

Ex− x2 ≤ CK2


s log n

m

Theorem 10.3 (Exact sparse recovery). Consider optimization program

minimize x′1 s.t. y = Ax′ (1)

Suppose the rows Ai of A are independent, isotropic and sub-gaussian random vectors, and let K :=
maxi Aiψ2

. Then the following happens with probability at least 1− 2 exp

−cm/K4


.

Assume an unknown signal x ∈ Rn is s-sparse and the number of measurements m satisfies

m ≥ CK4s log n

Then a solution x of the program is exact, i.e.

x = x.

Definition 10.4 (RIP). An m×n matrix A satisfies the restricted isometry property (RIP) with parameters
α,β and s if the inequality

αv2 ≤ Av2 ≤ βv2
holds for all vectors v ∈ Rn such that v0 ≤ s

Theorem 10.5 (RIP implies exact recovery). Suppose an m×n matrix A satisfies RIP with some parameters
α,β and (1 + λ)s, where λ > (β/α)2. Then every s-sparse vector x ∈ Rn can be recovered exactly by solving
the program (1), i.e. the solution satisfies

x = x.

Theorem 10.6 (Random matrices satisfy RIP). Consider an m × n matrix A whose rows Ai of A are
independent, isotropic and sub-gaussian random vectors, and let K := maxi Aiψ2

. Assume that

m ≥ CK4s log(en/s)

Then, with probability at least 1 − 2 exp

−cm/K4


, the random matrix A satisfies RIP with parameters

α = 0.9
√
m,β = 1.1

√
m and s.

27



Theorem 10.7 (Performance of Lasso). Linear regression setting Y = Xβ+w Consider the Lasso program

minimize y −Ax′2 s.t. x′1 ≤ R (2)

Suppose the rows Ai of A are independent, isotropic and sub-gaussian random vectors, and let K :=
maxi Aiψ2

. Then the following happens with probability at least 1− 2 exp(−s log n).
Assume an unknown signal x ∈ Rn is s-sparse and the number of measurements m satisfies

m ≥ CK4s log n

Then a solution x of the program (2) with R := x1 is accurate, namely

x− x2 ≤ Cσ


s log n

m
,

where σ = wL2
/
√
m.
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Definition 11.1. Let V be a vector space. A function f : V → R is called positive-homogeneous if f(αx) =
αf(x) for all α ≥ 0 and x ∈ V .

The function f is called subadditive if

f(x+ y) ≤ f(x) + f(y) for all x, y ∈ V

Theorem 11.2 (General matrix deviation inequality). Let A be an m × n Gaussian random matrix with
i.i.d. N(0, 1) entries. Let f : Rm → R be a positive-homogeneous and subadditive function, and let b ∈ R be
such that

f(x) ≤ bx2 for all x ∈ Rn

Then for any subset T ⊂ Rm, we have

E sup
x∈T

|f(Ax)− Ef(Ax)| ≤ Cbγ(T )

Here γ(T ) is the Gaussian complexity.

Lemma 11.3 (Sub-gaussian increments). Let A be an m × n Gaussian random matrix with i.i.d. N(0, 1)
entries, and let f : Rm → R be a positive homogenous and subadditive function satisfying (11.3). Then the
random process

Xx := f(Ax)− Ef(Ax)

has sub-gaussian increments with respect to the Euclidean norm, namely

Xx −Xyψ2
≤ Cbx− y2 for all x, y ∈ Rn.

Corollary 11.4 (Johnson-Lindenstrauss Lemma for ℓ1 norm). Let X be a set of N points in Rn, let A be
an m× n Gaussian matrix with i.i.d. N(0, 1) entries, and let ε ∈ (0, 1). Suppose that

m ≥ C(ε) logN

With high probability the matrix Q :=

π/2 ·m−1A satisfies

(1− ε)x− y2 ≤ Qx−Qy1 ≤ (1 + ε)x− y2 for all x, y ∈ X

Corollary 11.5 (Johnson-Lindenstrauss Lemma for ℓ∞ norm). Let X be a set of N points in Rn, let A be
an m× n Gaussian matrix with i.i.d. N(0, 1) entries, and let ε ∈ (0, 1). Suppose that

m ≥ NC(ε)

With high probability the matrix Q :=

π/2 ·m−1A satisfies

(1− ε)x− y2 ≤ Qx−Qy1 ≤ (1 + ε)x− y2 for all x, y ∈ X

With high probability the matrix Q := C(logm)−1/2A, for some appropriate constant C, satisfies

(1− ε)x− y2 ≤ Qx−Qy∞ ≤ (1 + ε)x− y2 for all x, y ∈ X

Note that in this case m ≥ N , so Q gives an almost isometric embedding (rather than a projection) of the
set X into ℓ∞.
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Theorem 11.6 (General Chevet’s inequality). Let A be an m × n Gaussian random matrix with i.i.d.
N(0, 1) entries. Let T ⊂ Rn and S ⊂ Rm be arbitrary bounded sets. Then

E sup
x∈T

sup
y∈S

〈Ax, y〉 − w(S)x2
 ≤ Cγ(T ) rad(S)

Theorem 11.7 (Random projections of sets). Let A be an m×n Gaussian random matrix with i.i.d. N(0, 1)
entries, and T ⊂ Rn be a bounded set. Then the following holds with probability at least 0.99 :

r−B
m
2 ⊂ conv(AT ) ⊂ r+B

m
2

where
r± := w(T )± C

√
m rad(T )

Theorem 11.8 (voretzky-Milman’s theorem: Gaussian form). Let A be an m×n Gaussian random matrix
with i.i.d. N(0, 1) entries, T ⊂ Rn be a bounded set, and let ε ∈ (0, 1). Suppose

m ≤ cε2d(T )

where d(T ) is the stable dimension of T introduced in Section 7.6. Then with probability at least 0.99, we
have

(1− ε)B ⊂ conv(AT ) ⊂ (1 + ε)B

where B is a Euclidean ball with radius w(T ).

Corollary 11.9 (Gaussian cloud). Consider a Gaussian cloud of n points in Rm, which is formed by i.i.d.
random vectors g1, . . . , gn ∼ N (0, Im) . Suppose that

n ≥ exp(Cm)

with large enough absolute constant C. Show that with high probability, the convex hull the Gaussian cloud
is approximately a Euclidean ball with radius ∼

√
log n.

A random projection of a set T in Rn onto an m dimensional subspace approximately preserves the
geometry of T if m ≳ d(T ). For smaller m, the projected set PT becomes approximately a round ball of
diameter ∼ ws(T ), and its size does not shrink with m.
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