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Proposition 2.1 (Tails of the normal distribution). Let g ~ N(0,1). Then for all t > 0, we have

11 1 S PN
- )= <P{g>tl< = ——e b/
(t t3) Vor sPlg=ty<y Vor

In particular, for t > 1 the tail is bounded by the density:
1 2
P{g >t} < ——e " /2
{g=1t} < N
Theorem 2.2 (Berry-Esseen central limit theorem).

 Sy-ESy 1 N
Zn = J/Var (Sy) m/N;(XZ #)

for every N and every t € R we have

|P{ZN2t}—P{gzt}\s%

Here p=E|X, — p|* Jo® and g ~ N(0,1).

Theorem 2.3 (Hoeffding inequality). Let Xi,..., Xy be independent symmetrical Bernoulli random vari-
ables, and a = (ay,...,ay) € RN. Then, for any t > 0, we have

N t2
P iXi >ty < -
2 o (~37a7)

Theorem 2.4 (Hoeffding inequality for general bounded random variable). Let Xy,..., Xn be independent
random variables. Assume that X; € [m;, M;] for every i. Then, for any t > 0, we have

p IS (x, _Ex 247
i —BEX;) >t <exp| —
{Z( ) } ep( zﬁV_l(Mi—m»Q)

=1

Proposition 2.5 (subgaussian properties).

P{|X| >t} < 2exp (—ct2/||X||312> for allt >0
1X|[Lr < ClIXly,y/p  for allp>1
E exp (X2/||X||iz) <2
if EX =0 then Eexp(AX) < exp (CN?||X|[7,) forall \eR .

Proposition 2.6 (sum of independent sub-gaussian).

N 2

>

i=1

N
2
<Oy IIXily,
o i=1



Theorem 2.7 (General Hoeffding inequality 1). Let X1,...,Xx be independent, mean zero, sub-gaussian
random variables. Then, for every t > 0, we have

P{iX >t}<2exp< ot >
i|zte s TSN v 2
S 165,

i=1
Theorem 2.8 (General Hoeffding inequality 2). Let Xi,...,Xn be independent, mean zero, sub-gaussian
random variables, and a = (ay,...,ayn) € RN, Then, for every t > 0, we have

N
g a; X;
=1

p{ )

ct?
Z t S QGXp 7Wa||%

Theorem 2.9 (Khintchine’s inequality for p > 2). Let X1,...,Xn be independent sub-gaussian random
variables with zero means and unit variances, and let a = (a1, ...,an) € RV,

N 1/2 N N 1/2
i=1 i=1 i=1

where K = max; || X[, and C is an absolute constant.

where K = max; || X;||,,

Lp

Theorem 2.10 (Khintchine’s inequality for p = 1). Same setting as 2.9

N 1/2 N N 1/2
c(K) (Z a?) < ZaiXi < (Z a?)
i=1 i=1 i=1

Here K = max; || X, and ¢(K) > 0 is a quantity which may depend only on K.

Ll

Definition 2.11 (sub-exponential norm).
| X, = inf{t > 0: Eexp(|X|/¢) < 2}
Lemma 2.12 (Centering). If X is a sub-gaussian random variable then X —EX is sub-gaussian, too, and
X —EX|ly, < ClI X[l
X —EX|ly, < ClIX]ly,

where C is an absolute constant.

Lemma 2.13 (sub-exponential is sub-gaussian square). A random variable X is sub-gaussian if and only if
X? is sub-exponential. Moreover,

2 2

X2, = 1X15,

Lemma 2.14 (product of sub-gaussian is sub-exponential). Let X and Y be sub-gaussian random variables.
Then XY 1is sub-exponential. Moreover,

[ XY gy < X 1Y Ny

Theorem 2.15 (Bernstein’s inequality 1). Let Xi,...,Xn be independent, mean zero, sub-exponential
random variables. Then, for every t > 0, we have

]P’{ > t} <9 [ : ( t? t )]
- = exXp [—cmin ~ 5> : -
Dimt 1 XGll, max; Xl ,

where ¢ > 0 is an absolute constant.
Remark: The reason we have "min” here is: the bound for MGF does not hold for all lambda in case of
subexponential

N

> X

i=1




Theorem 2.16 (Bernstein’s inequality 2). Let Xi,..., Xy be independent, mean zero, sub-exponential
random variables, and a = (a1, ...,an) € RN. Then, for every t > 0, we have

P >t <2ep[ cmin( r t )]
= = X - ’
2 K2al3 Kllall=

N
S ax
=1
Theorem 2.17 (Bernstein’s inequality for bounded distributions). Let Xi,...,Xxn be independent, mean
zero random variables, such that | X;| < K alli. Then, for every t > 0, we have

11»{ zt} < 2exp <‘%§t/3)

Here 02 = vazl EX? is the variance of the sum.

where K =max || X,
K3

N

> x

i=1

Theorem 2.18 (bounded difference inequality). Theorem 2.9.1 (Bounded differences inequality). Let X1,..., XN
be independent random variables. Let f : R™ — R be a measurable function. Assume that the value of f(x)

can change by at most ¢; > 0 under an arbitrary change of a single coordinate of x € R™. Then, for any

t > 0, we have

PUCX) - BA() 2 1) < exp (- )

where X = (X1,...,X,)

Theorem 2.19 (Bennett’s inequality). Let Xi,..., Xy be independent random variables. Assume that
|X; — EX;| < K almost surely for every i. Then, for any t > 0, we have

P {é (X; —EX;) > t} < exp (—;{—22’1 (%))

where 02 = Zfil Var (X;) is the variance of the sum, and h(u) = (1 + u)log(1 + u) — u.
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Theorem 3.1 (Concentration of norm). Let X = (X1,...,X,,) € R" be a random vector with independent,
sub-gaussian coordinates X; that satisfy EX? = 1. Then

11X || = VA, < CK?

ct?
P{’||X|2—\/ﬁ’2t}§2exp<—ﬁ> forallt >0
where K = max; || X;|,, and C is an absolute constant.

Lemma 3.2 (Characteristic of isotropy). A random vector X in R™ is isotropic if and only if
E(X,z)? = ||z||3  for all z € R™.
Lemma 3.3. Let X be an isotropic random vector in R™. Then
E|IX|I} =n
Moreover, if X and Y are two independent isotropic random vectors in R™, then
E(X,Y)?=n
Lemma 3.4 (Normal and spherical distributions). Let us represent g ~ N (0, I,,) in polar form as
g=rb

where r = ||g|2 is the length and 6 = g/||g||2 is the direction of g. Then
(a) The length v and direction 6 are independent random variables.
(b) The direction 6 is uniformly distributed on the unit sphere S"~1.

Lemma 3.5 (Sub-gaussian distributions with independent coordinates). Let X = (X1,...,X,) € R™ be a
random vector with independent, mean zero, subgaussian coordinates X;. Then X is a sub-gaussian random
vector, and

1XIly, < C'max X,

Theorem 3.6 (Uniform distribution on the sphere is sub-gaussian). Let X be a random vector uniformly
distributed on the Euclidean sphere in R™ with center at the origin and radius \/n :

X ~ Unif (vnS™1)

Then X is sub-gaussian, and
[ Xy, <C

Remark: result also hold for Uniform distribution on the Euclidean ball Unif (B(0,+/n)).

Theorem 3.7 (Projective limit theorem). X ~ Unif (\/ﬁsn—l) then for any fized unit vector x, we have
(X,z) — N(0,1) in distribution as n — co.



Theorem 3.8 (Grothendieck’s inequality). Consider an m x n matriz (a;;) of real numbers. Assume that,
for any numbers x;,y; € {—1,1}, we have

Z aijriy;| <1
(2]

Then, for any Hilbert space H and any vectors u;,v; € H satisfying ||u;|| = ||v;]| = 1, we have

Zaij (u, v5)| < K
(2]

where K < 1.783 is an absolute constant.

Definition 3.9 (semidefinite programme). A semidefinite program is an optimization problem of the follow-

ing type:
maximize(A4,X): X >0, (B, X)=b; fori=1,....,m

Here A and B; are given n X n matrices and b; are given real numbers.

Theorem 3.10. Consider two optimization problem: for a given matriz A € R™*"

INT(A)= mazimize Z Ajjriz; . xy==+1fori=1,...,n
i,j=1
SDP(A) = maximize(4,X): X =0, X;=1fori=1,...,n
Then
INT(A) < SDP(A) < 2K -INT(A)
where K < 1.783 is the constant in Grothendieck’s inequality.

Theorem 3.11 (Max-cut and SDP relaxation). Given graph G and adjacency matriz A

MAX —CUT(G) = imax Z Aij (1 —zixj) s o, = £1 for all i

4,J=1

SDP(G) = imax Z Aij (]. — <XZ,XJ>) : Xz € Rn, ||X1||2 =1 f07" all 1

i,5=1

Let © = (x;) be the result of a randomized rounding of the solution (X;) of the semidefinite program, which
means that
g~ N(0,1)
x; =sign(X;,9), i=1,...,n

Then we have
ECUT(G,z) > 0.878 SDP(G) > 0.878 MAX-CUT (G)

Lemma 3.12 (Grothendieck’s identity). Consider a random vector g ~ N (0,1,). Then, for any fixed

vectors u,v € S"L, we have

2
Esign(g, u) sign(g, v) = — arcsin{u, v)
7r
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Definition 4.1 (operator norm quadratic form).

All = a A
A= max  (A2)

Lemma 4.2 (Approximate isometry). Let A be an m x n matriz and 6 > 0. Suppose that
|ATA - I,|| < max (5,6%).

Then
(1 =9)|zll2 < | Azl < (1 +0)|lx|l2  for all x € R".

Consequently, all singular values of A are between 1 — 0 and 149 :
1—-0<s,(A)<s51(A) <146 .

Definition 4.3 (packing number). A subset N of a metric space (T,d) is € -separated if d(z,y) > € for all
distinct points x,yy € N. The largest possible cardinality of an e -separated subset of a given set K C T is
called the packing number of K and is denoted P(K,d,¢).

Lemma 4.4 (Nets from separated sets). Let N be a maximal %c -separated subset of K. Then N is an e-net
of K.

Lemma 4.5 (Equivalence of covering and packing numbers). For any set K C T and any € > 0, we have
P(K,d,2¢) < N(K,d,2) < P(K, d, )

Proposition 4.6 (Covering numbers and volume). Let K be a subset of R™ and € > 0. Then

|K| (K + (¢/2)B3)]
eBy] <N(K,e) < P(K,e) < W

Corollary 4.7 (Covering numbers of the Euclidean ball).

(1Y <xmsos (2en)

The same upper bound is true for the unit Euclidean sphere S™~1.

Lemma 4.8 (Computing the operator norm on a net). Let A be an m X n matriz and € € [0,1). Then, for
any e-net N of the sphere S~ ', we have

1
sup [|Az|lz < A < — - sup [|Az])2
1
zeN — & zeN

Theorem 4.9 (Norm of matrices with sub-gaussian entries). Let A be an mx n random matriz whose
entries A;j are independent, mean zero, sub-gaussian random variables. Then, for any t > 0 we have 6

Al < CK(vm +/n+t)

with probability at least 1 — 2exp (—t?) . Here K = max; [ Aijl,,-



Corollary 4.10 (Norm of symmetric matrices with sub-gaussian entries). Let A be an n X n symmetric
random matriz whose entries A;; on and above the diagonal are independent, mean zero, sub-gaussian random
variables. Then, for any t > 0 we have

Al < CE(Vn +1t)

with probability at least 1 — 4exp (—t?) . Here K = max; ; [ Aij L, -
Theorem 4.11 (Weyl’s inequality). For any symmetric matrices S and T with the same dimensions, we
have

max [\(S) ~ M (T)| < IS~ T

Theorem 4.12 (Davis Kahan). Let S and T' be symmetric matrices with the same dimensions. Fiz i and
assume that the i-th largest eigenvalue of S is well separated from the rest of the spectrum:

Jij#i
Then the angle between the eigenvectors of S and T corresponding to the i-th largest eigenvalues (as a number
between 0 and 7/2) satisfies
28 =T
sin Z (v;(S),v;(T)) < M

and
25218 =T
)
Theorem 4.13 (Two-sided bound on sub-gaussian matrices, not sharp). Let A be an m X n matriz whose

rows A; are independent, mean zero, sub-gaussian isotropic random vectors in R™. Then for any t > 0 we
have

0 e {-1,1}:  |[lvi(S) — v (T)|, <

Vi — CK2(y/n + ) < sn(A) < 51(4) < v + CK2(v/A +1)
with probability at least 1 — 2exp (—t*) . Here K = max; [l Aill,, -

Theorem 4.14 (covariance estimation). Let X be a sub-gaussian random vector in R™. More precisely,
assume that there exists K > 1 such that

KX 2) [y, < KI(X, 2)|[22 for any z € R™.

Then, for every positive integer m, we have

Bz, - 3 < 0k* (/2 + 2 g

IS0 — 3| < CK? ( ntu, ”*“) 1=
m m

3

OR

with probability at least 1 — 2e™™.
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Theorem 5.1 (Concentration of Lipschitz functions on the sphere). Consider a random vector X ~
Unif (\/ES"_l), i.e. X is uniformly distributed on the Fuclidean sphere of radius \/n. Consider a Lips-
chitz function f :\/nS"~ ' — R. Then

1F(X) = Ef(Xlw, < CllfllLip

¢ 2
P{If(X) —Ef(X)| > t} < 2exp <_;>

11125,

Theorem 5.2 (Isoperimetric inequality on R™). Among all subsets A C R™ with given volume, the Fuclidean
balls have minimal area. Moreover, for any € > 0, the Fuclidean balls minimize the volume of the e-
neighborhood of A, defined as >

A. :i={z € R": 3y € A such that |z — y||2 < e} = A+ eBY

Theorem 5.3 (Isoperimetric inequality on the sphere). Let ¢ > 0. Then, among all sets A C S"~1 with
given area op,—1(A), the spherical caps minimize the area of the neighborhood o,,—1 (Ac), where

A, :={x € 5" "3y € A such that ||z — y||» < e}

Lemma 5.4 (blow-up). Let A be a subset of the sphere /nS™™ 1, and let o denote the normalized area on
that sphere. If 0(A) > 1/2, then, for every t > 0,

o (Ay) > 1—2exp (—ct?)

Lemma 5.5 (Concentration about expectation and median are equivalent). Consider a random variable Z
with median M. Show that

cllZ =EZ|ly, <||Z = Mlly, < C|Z - EZ|y,

Theorem 5.6 (Gaussian isoperimetric inequality). Let € > 0. Then, among all sets A C R™ with fized
Gaussian measure v, (A), the half spaces minimize the Gaussian measure of the neighborhood v, (Ae) .

Theorem 5.7 (Gaussian concentration). Consider a random vector X ~ N (0,1,) and a Lipschitz function
f:R™ = R (with respect to the Euclidean metric). Then

1F(X) =Ef(X)lp, < CllfllLip

Theorem 5.8 (Concentration on the Hamming cube). Consider a random vector X ~ Unif {0,1}™. (Thus,
the coordinates of X are independent Ber(1/2) random variables.) Consider a function f : {0,1}" — R.

fhen Il
1) = E7 (O < SVl

Theorem 5.9 (Concentration on the continuous cube). Consider a random vector X ~ Unif ([0,1]™). (Thus,
the coordinates of X are independent random variables uniformly distributed on [0,1].) Consider a Lipschitz
function f:[0,1]™ — R. (The Lipschitz norm is with respect to the Euclidean distance.) Then

1£(X) =Ef(X)lly, < Clfllzip

10



Theorem 5.10 (Concentration on the Euclidean ball). Consider the random vector X ~ Unif (y/nBY).
Consider a Lipschitz function f : \/nBY — R. (The Lipschitz norm is with respect to the Euclidean distance.)
Then

[£(X) = Ef(X)llp, < CllflLip
Theorem 5.11 (Concentration of concave density). Consider a random vector X in R™ whose density

has the form f(z) = e U@ for some function U : R* — R. Assume there exists k > 0 such that 2
HessU(x) = kI,  for all x € R™ Then any Lipschitz function f : R™ — R satisfies

Cllf Nz
X)-Ef(X < P
1£0) = BF (X)), < L2
Theorem 5.12 (Talagrand’s concentration inequality). Consider a random vector X = (X1,...,X,) whose

coordinates are independent and satisfy
|Xi| <1 almost surely.
Then for any convex Lipschitz function f: [0,1]" — R

Cllfll i
N

Remark: In particular, Talagrand’s concentration inequality holds for any norm on R™.

[F(X) =Ef (X, <

Theorem 5.13 (Johnson-Lindenstrauss Lemma). Let X' be a set of N points in R™ and & > 0. Assume that
m > (0/52) log N

Consider a random m -dimensional subspace E in R™ uniformly distributed in Gy, ,,,. Denote the orthogonal
projection onto E by P. Then, with probability at least 1 — 2 exp (—ceQm), the scaled projection

n
Q:=4/—P
m
18 an approximate isometry on X :

(I=e)llz -yl < Q- Qyll < (L + &)z —ylla  for all z,y € X

Remark: Let A be an m x n random matriz whose rows are independent, mean zero, subgaussian isotropic
random vectors in R™. Show that the conclusion of JohnsonLindenstrauss lemma holds for Q = (1/y/n)A

Lemma 5.14 (Random projection). Let P be a projection in R™ onto a random m -dimensional subspace
uniformly distributed in Gy, . Let z € R™ be a (fized) point and € > 0. Then:

(a)
(EIP=13)"" = |/ 221

(b) With probability at least 1 — Qexp —ce m) we have

(L—e)y/ Zllefla < [I1P2ll2 < (1 +¢) W Zlelle

Theorem 5.15 (Matrix Bernstein’s inequality). Let X1,..., X be independent, mean zero, n xn symmetric
random matrices, such that || X;|| < K almost surely for all i. Then, for every t > 0, we have

N 2
t4/2
P >ty <2 _
{ i=1 a }_ ”eXp< 02+Kt/3>

11




Here 02 = szj\;l IEXfH s the norm of the matriz variance of the sum. In particular, we can express this

bound as the mixture of sub-gaussian and sub-exponential tail, just like in the scalar Bernstein’s inequality:

ol 2 ¢
]P’{ ZXi Zt}anexp {—amm (;,?ﬂ
Remark: max(a,b) <a+b

=1
For rectangular matriz m x n,

"

N

S x

i=1

> t} < 2(m + n) exp (—ﬁi)

o2+ Kt/3
N
ZEXin
=1

| )

Theorem 5.16 (Golden-Thompson inequality). For any n x n symmetric matrices A and B, we have

tr (eA+B) < tr (eAeB)

where

)

N
Z EX; X,
=1

Unfortunately, Goldon-Thpmpson inequality does not hold for three or more matrices: in general, the in-
equality tr (eA+B+C) < tr (eAePe®) may fail.

Theorem 5.17 (Lieb’s inequality). Let H be an n x n symmetric matriz. Define the function on matrices
f(X) :=trexp(H + log X)
Then f is concave on the space on positive definite n X n symmetric matrices.

Theorem 5.18 (Lieb’s inequality for random matrices). Let H be a fixred n X n symmetric matriz and Z be
a random n X n symmetric matriz. Then

Etrexp(H + Z) < trexp (H + logEeZ)

Lemma 5.19 (Moment generating function). Let X be an n X n symmetric mean zero random matrix such
that || X|| < K almost surely. Then

A\2/2
Eexp(AX) 2 exp (9(\EX?)  where g(\) = ﬁ
provided that |\| < 3/K.
Theorem 5.20 (Matrix Bernstein’s inequality: expectation). Let Xi,..., Xy be independent, mean zero,

n x n symmetric random matrices, such that || X;|| < K almost surely for all i. Deduce from Bernstein’s
inequality that

N N 1/2
E|> Xi| < EX2|| /1+logn+ K(1+logn).
i=1 i=1
Theorem 5.21 (Matrix Hoeffding’s inequality). Let eq,...,&, be independent symmetric Bernoulli random
variables and let Aq,...,An be symmetric n X n matrices (deterministic). Prove that, for any t > 0, we
have
N
]P’{ ZsiAi > t} < 2nexp (—t2/202)
i=1
where 02 = HZi\Ll A2

12



Theorem 5.22 (Matrix Khintchine’s inequality). Leteq,...,en be independent symmetric Bernoulli random

variables and let Ay, ..., Ay be symmetric n X n maltrices (deterministic).
N N 1/2
E ZsiAi < Cy1+logn ZAZQ
i=1 i=1

More generally, prove that for every p € [1,00) we have

N N
i=1 1=1

Theorem 5.23 (General covariance estimation). Let X be a random vector in R™,n > 2. Assume that for
some K > 1,

1/2

p\ 1/p
) < C\/p+logn

[Xl2 < K (IE||X||§)1/2 almost surely

Then, for every positive integer m, we have

K2nlogn KZ2nlogn
B[ — X SC<\/ + [pa]|
m m

Theorem 5.24 (Low dimension covariance estimation). Intrinsic dimension r =

K2rlogn KZ?rlogn
E{[Xm — X SC(\/ + [p]|
m m

In particular, this stronger bound implies that a sample of size

m = e 2rlogn

is sufficient to estimate the covariance matriz.
Tasil bound:

K2r(1 K2r(l
||Zm_2||§0< r(ogn+u)+ r(ogn+u)> Bl

m m

with probability at least 1 — 2e~*. Here r = tr(X)/||X]| < n.

13
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Lemma 6.1. Let Y and Z be independent random wvariables such that EZ = 0. Then, for every convex
function F', one has
EF(Y)<EF(Y + Z2)

Theorem 6.2 (Decoupling). Let A be an n X n, diagonal-free matriz (i.e. the diagonal entries of A equal
zero). Let X = (Xi,...,X,) be a random wvector with independent mean zero coordinates X;. Then, for
every convex function F : R — R, one has

EF (XTAX) <EF (4XTAX')

where X' is an independent copy of X.
Stronger version: for any square matriz A = (a;;) we have

EF [ Y a;XiX; | SEF [4) a;X;X]
i,J1i#] ,J
Theorem 6.3 (Hanson-Wright inequality). Let X = (X1,...,X,) € R"™ be a random vector with indepen-
dent, mean zero, sub-gaussian coordinates. Let A be an n X n matriz. Then, for every t > 0, we have

t2 t
P{XTAX —EXTAX| >t} < 2exp [—cmin( ; )}
{ =1 RTTATE KoTA]

where K = max; || Xi||,,

Lemma 6.4 (MGF of Gaussian chaos). Let X, X’ ~ N (0,1,) be independent and let A = (a;;) be annxn
matriz. Then
Eexp (AX TAX') < exp (CA?[|A]})

for all \ satisfying |\ < ¢/||A]l.

Lemma 6.5 (Comparison). Consider independent, mean zero, sub-gaussian random vectors X, X' in R"
with [| Xy, < K and || X'[|,,, < K. Consider also independent random vectors g,g" ~ N (0,1,,) . Let A be an
n X n matriz. Then

Eexp (AX "AX') <Eexp (CK?\g' Ag')

for any A € R.

Theorem 6.6 (Higher-dimensional Hanson-Wright inequality). Let X,..., X, be independent, mean zero,
sub-gaussian random vectors in R%. Let A = (a;;) be an n x n matriz. Prove that for every t > 0, we have

- t2 t
P ai; (X3, X)) >t p <2exp [—cmin( , )}
2 o, K[ A% K2 A]

where K = max; || X[, -

14



Theorem 6.7 (Concentration of random vectors). Let B be an mxn matriz, and let X = (X4,...,X,) € R®
be a random vector with independent, mean zero, unit variance, sub-gaussian coordinates. Then

HIBX |2~ B rll,, < CK?|B]|
where K = max; || X,

Lemma 6.8 (Symmetrization). Let Xq,...,Xxn be independent, mean zero random wvectors in a normed
space. Then

1 N N N
SE ZeiXi <E ZXZ- <2E ZeiXi
=1 =1 =1

Lemma 6.9 (Symmetrization general). Let F': Ry — R be an increasing, convex function. Show that the
same inequalities in Lemma 6.8 hold if the norm || - || is replaced with F(|| - ||), namely

[ > -
EF <2 Z{-;iXi ) gIEF( ZXZ' ) <EF <2 ZsiXi )
i=1 i=1 i=1

Theorem 6.10 (Norms of random matrices with non-i.i.d. entries). Let A be an n X n symmetric random
matrix whose entries on and above the diagonal are independent, mean zero random variables. Then

E|lA]l < Cy/logn - Emax||Aill,

where A; denote the rows of A.
Remark: do not confuse with norm for gaussian matriz, this is a general result, hence not sharp.
For rectangular matriz:

E|| Al < C+/log(m + n) (]Emax | 4; |5 + Emax "AjHQ)
i J
where A; and A’ denote the rows and columns of A, respectively.
Theorem 6.11 (Matrix completion). Rank(X) = r,7 < n,p = m/n>
Yij :==0;;X;; where ;5 ~ Ber(p) are independent.
we are shown m entries of X on average. Let X be a best rank r approzimation to p~1Y . Then

rnlogn

1. -
E-||X - X|r<C 1 e

m

as long as m > nlogn. Here || X |l = max; ; |X;;| is the mazimum magnitude of the entries of X.

Theorem 6.12 (Contraction Principle). Let €1,€9,¢€3,... a sequence of independent symmetric Bernoulli
random variables, x1,...,x N be (deterministic) vectors in some normed space, and let a = (ay,...,a,) € R™.
Then
N N
E Zaieimi < ||a||oo -E Z&il‘i
i=1 i=1
Lemma 6.13 (Symmetrization with Gaussians). Let Xi,..., Xy be independent, mean zero random vectors
in a normed space. Let g1,...,gn ~ N(0,1) be independent Gaussian random wvariables, which are also
independent of X;. Then
. N N N
——F X <E X;|| <3E i X
/log N ; gl K3 — ; K3 i P g'L 3
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Lemma 6.14 (Talagrand’s contraction principle). Consider a bounded subset T C R™, and let €1,...,&, be
independent symmetric Bernoulli random variables. Let ¢; : R — R be contractions, i.e. Lipschitz functions
with || ¢ill g, < 1. Then

EsupZez@ <E5upz<€t

tET tET

Lemma 6.15 (Gaussian contraction principle). Consider a bounded subset T C R™, and let g1,...,g, be
independent N(0,1). Let ¢; : R — R be contractions, i.e. Lipschitz functions with ||¢;| 1, < 1. Then

IEsungquz i <ESungzz

tET
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Definition 7.1. Increments of the random process are defined as

0\ 1/2
At ) =X = X2 = (BE(X, = X)P) 7, tseT

Lemma 7.2 (Symmetrization for random processes). Let X1(¢),...,Xn(t) be N independent, mean zero
random processes indexed by points t € T. Let €1,...,en be independent symmetric Bernoulli random vari-

ables. Prove that
N N N

1
—Esup » &X;(t) <Esup ) X;(t) <2Esup » &X;(t
2 teT; Xilt) teT; ' teT; i)

Theorem 7.3 (Slepian’s inequality). Let (X;),. and (Y3),op be two mean zero Gaussian processes. Assume
that for all t,s € T, we have

EXZ=EY? and E(X,—X,)?<E(Y,-Y,)>

Then for every T € R we have

]P’{supXt > 7'} < ]P’{squ} > 7'}
teT teT

Consequently,

Esup X; <EsupY;
teT teT

Whenever the tail comparison inequality (7.3) holds, we say that the random variable X is stochastically
dominated by the random variable Y .

Lemma 7.4 (Stein identity). o [f X ~N (0,02), for any differentiable function f: R — R we have
EX f(X) = o’Ef'(X)

o Multivariate stein identity: Let X ~ N(0,3). Then for any differentiable function f : R™ — R we
have
EXf(X)=%X -EVf(X)

— EX;f(X) = ZZU]E%(X), i=1,...,n
j=1 i

Lemma 7.5 (Gaussian interpolation). Consider two independent Gaussian random vectors X ~ N (0, %)
and Y ~ N (07 EY) . Define the interpolation Gaussian vector

Z(u) = VuX +vV1—uY, wuel01]

Then for any twice-differentiable function f:R™ — R, we have

d . 0?
REIEW) =5 3 (55 -2 g2
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Lemma 7.6 (Slepian’s inequality, functional form). Consider two mean zero Gaussian random vectors X
and Y in R™. Assume that for alli,7 =1,...,n, we have

EX? =EY? and IE:()Q—X]')2 SE(Yi_Yj)Q

Consider a twice-differentiable function f:R"™ — R such that

0% f
> i#j
D0z, = 0 foralli#j

Then
Ef(X) > Ef(Y)

Theorem 7.7 (Sudakov-Fernique’s inequality). Let (X;),c and (Y3),cp be two mean zero Gaussian pro-
cesses. Assume that for all t,s € T, we have

E(X; — X.)? <E(Y, - Y,)®

Then

Esup X; <EsupY;
teT teT

Theorem 7.8 (Gordon’s inequality). Let (Xut),cper and Y = (Yut),cp e be two mean zero Gaussian
processes indexed by pairs of points (u,t) in a product set U x T. Assume that we have

EX2, =EY?2, E(Xu — Xus)’ <E (Y —Yes)®  for all u,t,s

E(Xu — Xﬂs)2 >E (Y — sz)2 for all w# v and all t,s Then for every T > 0 we have

IP’{ inf sup X,;; > T} <P { inf sup Yy > T}
u€elU teT uelU ¢eT

Consequently,

E inf sup X+ < E inf sup Y,
u€U teT u€U teT

Theorem 7.9 (Norms of Gaussian random matrices). Let A be an m X n matriz with independent N (0, 1)

entries. Then
E|A|l < vim + va
P[]l > v + v+ £} < 2exp (—ct?)
Esn(A) > vm —+/n

Lemma 7.10 (Symmetric random matrix). Gaussian orthogonal ensemble (GOE): diagonal entries are
independent N(0,2) random variables.

E[J Al < 2v/n

tail bound
P{||Al| > 2v/n+t} < 2exp (—ct?)

Theorem 7.11 (Sudakov’s minoration inequality). Let (X),c, be a mean zero Gaussian process. Then,

for any € > 0, we have

Esup X; > ce/log N (T,d,¢)
teT

0\ 1/2
where d(t,s) == | X; — X4|| ;= = (E (X, — X,) )
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Corollary 7.12 (Sudakov’s minoration inequality in R™). Let T' C R™. Then, for any ¢ > 0, we have

Esup(g,t) > cer/log N (T, ¢)
teT

Here N (T, ¢) is the covering number of T by Euclidean balls — the smallest number of Euclidean balls with
radii € and centers in T that cover T.

Theorem 7.13. x1,...,xn denote the vertices of P

Esup(g,t) = Esup (g, 7;)
teP i<N

The equality here follows since the mazximum of the linear function on the convex set P is attained at an
extreme point, i.e. at a vertex of P.

Proposition 7.14 (Gaussian width). o w(T) is finite if and only if T is bounded.

o Gaussian width is invariant under affine unitary transformations. Thus, for every orthogonal matrix
U and any vector y, we have
w(UT +y) = w(T)

o Gaussian width is invariant under taking convex hulls. Thus,

w(conv(T)) = w(T)

o Gaussian width respects Minkowski addition of sets and scaling. Thus, for T,S C R™ and a € R we
have
w(T+8)=w(T)+w(S); w(Tl)=|alw(T)
o We have ] 1
w(l) = 5wl = T) = 5E sup {9,z —y)

z,yeT

o (Gaussian width and diameter). We have

1 Voo
Nt ~diam(T) < w(T) < 5 - diam(T)

o Gaussian width under linear transformations

w(AT) < [|Al|w(T)
Definition 7.15 (Spherical width). The spherical width of a subset T C R™ is defined as

ws(T) = ]ES1619<9795> where 6 ~ Unif ($"7")

Lemma 7.16 (Gaussian vs. spherical widths). We have
(Vn = C)ws(T) < w(T) < (Vn + Clwy(T)
Definition 7.17 (Squared gaussian width).

h(T)? := ]Efg$<g’t>2’ where g ~ N (0,1,)
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Lemma 7.18.
wT -T)<h(T-T)<w(T—-T)+ Cydiam(T) < Cw(T —T)

In particular, we have
2w(T) < h(T -T) <2Cw(T)

Definition 7.19 (stable dimension).

_ WT-T)? _ w(l)?
d(T) := diam(T)2 ~ diam(7T)2

The stable dimension is always bounded by the algebraic dimension: d(T) < dim(T")
Definition 7.20 (Stable rank).
IAlI%
(4) =
IA[J?

Theorem 7.21 (Sizes of random projections of sets). Consider a bounded set T C R™. Let P be a projection
in R™ onto a random m -dimensional subspace E ~ Unif (G, .,). Then, with probability at least 1 — 2e~™,
we have

diam(PT) < C [wS(T) + \/g diam(T)} .
Optimal:

E diam(PT) > ¢ [ws(T) + \/g diam(T)}

y. diam(PT)
diam(T) 7 -

wy(T)

|
d(T) n

Figure 1: The diameter of a random m -dimensional projection of a set T" as a function of m.
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Definition 8.1 (Sub-gaussian increment). Consider a random process (X¢),cq on a metric space (T, d).
We say that the process has sub-gaussian increments if there exists K > 0 such that

[ Xt — Xslly, < Kd(t,s) foralt,seT
where d(t,s) == || Xy — Xsl|;2, t,s€T

Theorem 8.2 (Dudley’s integral inequality). Let (X;),., be a mean zero random process on a metric space
(T, d) with sub-gaussian increments defined above. Then

o0
Esup X; < CK/ V9og N (T, d, e)de
0

teT
Remark:
diam(T)
Esup X; < CK V1og N (T, d, e)de
teT 0

Theorem 8.3 (Discrete Dudley’s inequality). Let (X),cp be a mean zero random process on a metric space
(T, d) with sub-gaussian increments defined above. Then

Esup X; < CK Y 27%\/log N (T, d, 2%)
teT keZ

Theorem 8.4 (Dudley’s integral inequality: tail bound). Let (Xt),cp be a random process on a metric space
(T, d) with sub-gaussian increments as in (8.1). Then, for every u > 0, the event

sup | X; — Xs| < CK [/ VIog N(T,d,e)de + u - diam(T)}
0

t,s€T
holds with probability at least 1 — 2 exp (—u2).

Theorem 8.5 (Dudley’s inequality for sets in R™). For any set T C R™, we have

w(T) < C/oo V1og N (T, e)de

1
w (By) SC/ \/nloggdsgcl\/ﬁ
0

Theorem 8.6 (Uniform law of large number). F :={f :[0,1] = R, ||f|lzip < L}. Let X, X1, Xo,..., X, be
i.i.d. random variables taking values in [0,1]. Then

For example:

oL
\/7_1

E sup <

fer

LS F ) —BA(X)

n-
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Definition 8.7 (VC dimension). Consider a class F of Boolean functions on some domain Q). We say that
a subset A C Q is shattered by F if any function g : A — {0,1} can be obtained by restricting some function
f € F onto A. The VC dimension of F, denoted vc(F), is the largest cardinality ! of a subset A C Q
shattered by F.

Lemma 8.8 (Pajor’s Lemma). Let F be a class of Boolean functions on a finite set Q. Then
|F| <|{A C Q: A is shattered by F}
We include the empty set A = 0 in the counting on the right side.

Theorem 8.9 (Sauer-Shelah Lemma). Let F be a class of Boolean functions on an n -point set Q. Then

d n en\d
A<y (1) =(5)
where d = ve(F).

Definition 8.10 (distance on probability measure ).

1/2
d(f,g9) = If —gllzzq = (/Q |f — gIQdu> ., f[LgeF

Theorem 8.11 (Covering numbers via VC dimension). Let F be a class of Boolean functions on a probability
space (2,3, ). Then, for every e € (0,1), we have

g

N (F,L*(p),e) < (E>Cd

Lemma 8.12 (Dimension reduction). Let F be a class of N Boolean functions on a probability space
(2,3, u). Assume that all functions in F are € -separated, that is

I.f = 9gll2(u) > € for all distinct f,g € F .

Then there exist a number n < Ce~*log N and an n -point subset ,, C Q such that the uniform probability
measure [, on ), satisfies

If = 9gllz2(un) > % for all distinct f,g € F.

Theorem 8.13 (Empirical processes via VC dimension). Let F be a class of Boolean functions on a prob-
ability space (Q, 3, u) with finite VC dimension ve(F) > 1. Let X, X1, Xo,..., X, be independent random
points in Q0 distributed according to the law p. Then

ve(F)

<C

E sup
feFr

L3 (X~ EF(Y)

Lemma 8.14 (Symmetrization for empirical processes). Let F be a class of functions on a probability space
(Q,2,pn). Let X, X1,Xs,...,X, be random points in Q distributed according to the law p. Prove that

I I
Esup |— (X)) —Ef(X) <2Esup |— eif (X;
fe]—‘n;() (X) fe]—‘n; (X4)
where €1,€a,... are independent symmetric Bernoulli random variables (which are also independent of

X1, Xa,...).
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Theorem 8.15 (Glivenko-Cantelli Theorem: non-asymptotic). Let X1, ..., X, be independent random vari-
ables with common cumulative distribution function F'. Then

C
E|F, - F|, . =E F - F < —
IFu = Fllg = Esup | F(a) ~ Pla)] <

Definition 8.16. Ideally, we would like to find a function f* from the hypothesis space F which would
minimize the risk R(f) = E(f(X) — T(X))?, that is

fri=arg ;IggR(f)

The empirical risk for a function f :Q — R is defined as

Rn(f) = (f (X0) =T (X3))*.

n
i=1
»:=argmin R
fn gfe]—' n(f)
The main question is: how large is the excess risk:

R(fa) — R(f7)

Theorem 8.17 (Excess risk via VC dimension). Assume that the target T is a Boolean function, and the
hypothesis space F is a class of Boolean functions with finite VC dimension vc(F) > 1. Then

ER(f2) < R(f*) + ¢y *4F)

Lemma 8.18 (Excess risk via uniform deviations). We have

R(f3) = R(f*) < 2sup |Rn(f) — R(f)|
fer

pointwise.

Theorem 8.19 (Learning in the class of Lipschitz functions). Consider
Fo=A{f:001 =R |[fllip <L}

and a target function T : [0,1] — [0, 1].

e random process Xy := Ry (f) — R(f) has sub-gaussian increment

CL
X5 — Xglly, < %Hf*gﬂoo forall f,ge F
C(L+1)

C(L+1)

R(f2) - R(f7) < NG

Definition 8.20. (T),—, is called an admissible sequence if

Tol =1, |TWl<2¥, k=1,2,...
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Definition 8.21 (Talagrand’s 7, functional). Let (T, d) be a metric space. The 7o functional of T is defined
as

T,d) = inf su 28124 (¢, T,
72(T, d) <Tk>teIT)kZ=0 (t, Tx)

where the infimum is with respect to all admissible sequences.

Theorem 8.22 (Generic chaining bound). Let (X¢),., be a mean zero random process on a melric space
(T, d) with sub-gaussian increments . Then

Esup X; < CK~»(T,d)
teT

Theorem 8.23 (Generic chaining: tail bound). Let (X¢),., be a random process on a metric space (T, d)
with sub-gaussian increments. Then, for every u > 0, the event

sup | X; — Xs| < CK [y2(T,d) 4+ u - diam(T')]
t,s€T

holds with probability at least 1 — 2 exp (—u2).

Theorem 8.24 (Talagrand’s majorizing measure theorem). Let (X¢),., be a mean zero Gaussian process
on a set T. Consider the canonical metric defined on T by (7.13), i.e. d(t,s) = || Xt — X|| 2. Then

c-7(T,d) <Esup X; < C-7(T,d)
teT

Corollary 8.25 (Talagrand’s comparison inequality). Let (X;),c, be a mean zero random process on a set
T and let (Y:),cp be a mean zero Gaussian process. Assume that for all t,s € T', we have

1Xe = Xslly, < KY: = Ysll 2

Then
Esup X; < CKEsupY;
teT teT
Corollary 8.26 (Talagrand’s comparison inequality: geometric form). Let (X;),c be a mean zero random
process on a subset T C R™. Assume that for all x,y € T, we have

X = Xylly, < Kllz—ylls

Then
Esup X, < CKw(T)
xzeT
Theorem 8.27 (Sub-gaussian Chevet’s inequality). Let A be an m x n random matriz whose entries A;j
are independent, mean zero, sub-gaussian random variables. Let T C R™ and S C R™ be arbitrary bounded
sets. Then
E sup (Az,y) < CK[w(T)rad(S) + w(S)rad(T)]
zeT,yes

where K = max;; ||Aij”¢2'
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Theorem 9.1 (Matrix deviation inequality). Let A be an m x n matriz whose rows A; are independent,
isotropic and sub-gaussian random vectors in R™. Then for any subset T C R™, we have

E sup [ Az ]|z = vml|z|lo| < CE?*4(T)
S

Here y(T) is the Gaussian complezity, and K = max; || 4],

Theorem 9.2 (Sub-gaussian increments). Let A be an mxn matriz whose rows A; are independent, isotropic
and sub-gaussian random vectors in R™. Then the random process

Xo = [|Az2 — vml|z|2
has sub-gaussian increments, namely
[ Xe = Xylly, < CK?||x —vylo for all z,y € R™.
Here K = max; [| 4,
Lemma 9.3. Let x,y € S"~'. Then
1Az [la—[ Ay [l2]l,5, < CK*[|z = yll2

Proposition 9.4 (Sizes of random projections of sets). Consider a bounded set T C R™. Let A be an m X n
matriz whose rows A; are independent, isotropic and sub-gaussian random vectors in R™. Then the scaled
matriz

P = A

1
Jn

(a 7sub-gaussian projection”) satisfies
E diam(PT) < /% diam(T) + CK 2w, (T)

Theorem 9.5 (Covariance estimation for lower-dimensional distributions). Let X be a sub-gaussian random
vector in R™. More precisely, assume that there exists K > 1 such that

X 2)ly, < KI(X, @)Lz for any z € R™.

Then, for every positive integer m, we have

Emm—szm40ﬁ1+i)wn
m m

where r = tr(X) /||| is the stable rank of ¥'/2.

HEm—EHSCK4<Mr+u+r+U>HMI
m m

with probability at least 1 — 2e™".
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Proposition 9.6 (Additive Johnson-Lindenstrauss Lemma). Consider a set X C R™. Let A be an m x n
matriz whose rows A; are independent, isotropic and sub-gaussian random vectors in R™. Then, with high
probability (say, 0.99), the scaled matric

1
= —A
Q ﬁ
satisfies
[z =yl =0 < |Qz = Qyl2 < [z —yll2+6  forallz,yeX
where

_ CK*u(X)

= m

and K = max; [|4;]|,,,-

Theorem 9.7 (M* bound). Consider a setT C R™. Let A be an mxn matriz whose rows A; are independent,
isotropic and sub-gaussian random vectors in R™. Then the random subspace E = ker A satisfies

CK?w(T)

Ediam(T' N E) <
N
where K = max; || A;], -

Corollary 9.8 (Affine sections).

K2w(T
E max diam (TN E,) < CKw(T)
zER™ v m

where E, = z + ker A.

Theorem 9.9 (Escape theorem). Consider a set T C S"~1. Let A be an m x n matriz whose rows A; are
independent, isotropic and sub-gaussian random vectors in R™. If

m > CK*w(T)?
then the random subspace E = ker A satisfies
TNE=0

with probability at least 1 — 2exp (—cm/K*) . Here K = max; [| A, .
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Theorem 10.1. Truth y = Az, x € T, optimization find ' : y = Ax', ' € T. Suppose the rows A;
of A are independent, isotropic and subgaussian random vectors. Then any solution T of the optimization

satisfies
CK?w(T)

Jm

El7 — 2|2 <

where K = max; || Ai|,,
Corollary 10.2 (Sparse recovery: guarantees). Consider optimization
Find ' :y=Az', |2'||, < Vs

Assume the unknown s-sparse signal x € R™ satisfies ||z||2 < 1. Then x can be approzimately recovered from
the random measurement vector y = Ax by a solution T of the optimization. The recovery error satisfies

1
E|z - af, < CK?y/ 2280
m

Theorem 10.3 (Exact sparse recovery). Consider optimization program

minimize ||'||, s.t. y = Az’ (1)

Suppose the rows A; of A are independent, isotropic and sub-gaussian random wvectors, and let K =
max; || Asll,,. Then the following happens with probability at least 1 — 2 exp (—em/K*).
Assume an unknown signal x € R™ is s-sparse and the number of measurements m satisfies

m > CK%slogn
Then a solution T of the program is exact, i.e.
T=uw.

Definition 10.4 (RIP). An m xn matriz A satisfies the restricted isometry property (RIP) with parameters
a, B8 and s if the inequality
allvllz < [|Av[lz < Bllv]2

holds for all vectors v € R™ such that ||v|lo < s

Theorem 10.5 (RIP implies exact recovery). Suppose an mxn matriz A satisfies RIP with some parameters
a, and (1 + \)s, where A > (B/a)?. Then every s-sparse vector x € R™ can be recovered exactly by solving
the program (1), i.e. the solution satisfies

T =z

Theorem 10.6 (Random matrices satisfy RIP). Consider an m x n matriz A whose rows A; of A are
independent, isotropic and sub-gaussian random vectors, and let K := max; HAz‘HwQ . Assume that

m > CK*slog(en/s)

Then, with probability at least 1 — 2exp (—cm/K*), the random matriz A satisfies RIP with parameters
a=0.9ym, B =1.1y/m and s.
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Theorem 10.7 (Performance of Lasso). Linear regression settingY = X+ w Consider the Lasso program
minimize |y — Az'|l, s.t. [|2']l; <R (2)

Suppose the rows A; of A are independent, isotropic and sub-gaussian random wvectors, and let K :=
max; [|A;ll,,. Then the following happens with probability at least 1 — 2 exp(—slogn).
Assume an unknown signal x € R™ is s-sparse and the number of measurements m satisfies

m > CK4slogn

Then a solution T of the program (2) with R = ||x||1 is accurate, namely

I
17 — 2l < Coy /2282
m

where o = ||w||L,/v/m.
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Definition 11.1. Let V be a vector space. A function f:V — R is called positive-homogeneous if f(ax) =
af(z) foralla >0 andx € V.
The function f is called subadditive if

fle+y) < f@)+ fy) for alz,y eV

Theorem 11.2 (General matrix deviation inequality). Let A be an m x n Gaussian random matriz with
i.i.d. N(0,1) entries. Let f:R™ — R be a positive-homogeneous and subadditive function, and let b € R be
such that

f(z) <b|zlle forallz e R"

Then for any subset T C R™, we have

Esup [f(Az) — Ef(Az)| < Cby(T)
zeT

Here ~(T) is the Gaussian complezity.

Lemma 11.3 (Sub-gaussian increments). Let A be an m x n Gaussian random matriz with i.i.d. N(0,1)
entries, and let f : R™ — R be a positive homogenous and subadditive function satisfying (11.3). Then the
random process

X, = f(Az) — Ef(Ax)
has sub-gaussian increments with respect to the Fuclidean norm, namely

[Xe = Xyll,, < Cbllz —yllz for all z,y € R™.

Corollary 11.4 (Johnson-Lindenstrauss Lemma for ¢; norm). Let X be a set of N points in R™, let A be
an m x n Gaussian matric with i.i.d. N(0,1) entries, and let € € (0,1). Suppose that

m > C(g)log N
With high probability the matriz Q := \/7/2 - m~' A satisfies
(1 =g)llz =yl <[|Qz — Qullx < (1 + &)z —yll2 for all z,y € X

Corollary 11.5 (Johnson-Lindenstrauss Lemma for £, norm). Let X' be a set of N points in R", let A be
an m X n Gaussian matriz with i.i.d. N(0,1) entries, and let € € (0,1). Suppose that

m > NC©
With high probability the matriz @ := \/7r—/2 -m~ LA satisfies
(1 —g)llz —ylls <[|Qz — Qullx < (1 + &)z —yll2 for all x,y € X
With high probability the matriz Q := C(log m)~Y2A, for some appropriate constant C, satisfies
(1 =e)llz—yllz <[1Qr - Qylloc < (1 +e)llz —ylla  forallz,ye X
Note that in this case m > N, so Q gives an almost isometric embedding (rather than a projection) of the

set X into .
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Theorem 11.6 (General Chevet’s inequality). Let A be an m x n Gaussian random matriz with i.i.d.
N(0,1) entries. Let T C R™ and S C R™ be arbitrary bounded sets. Then

Esup [sup(Az, y) — w(S)|z]|2| < Cy(T) rad(S)
zeT |yesS

Theorem 11.7 (Random projections of sets). Let A be an m xn Gaussian random matriz with i.i.d. N(0,1)
entries, and T' C R™ be a bounded set. Then the following holds with probability at least 0.99 :

r_Bjy* C conv(AT) C ry By*

where
ry = w(T) £ Cy/mrad(T)

Theorem 11.8 (voretzky-Milman’s theorem: Gaussian form). Let A be an m x n Gaussian random matric
with i.i.d. N(0,1) entries, T C R™ be a bounded set, and let ¢ € (0,1). Suppose

m < ce?d(T)

where d(T) is the stable dimension of T introduced in Section 7.6. Then with probability at least 0.99, we
have

(1—-¢)B Cconv(AT) C (1+¢)B
where B is a Euclidean ball with radius w(T).

Corollary 11.9 (Gaussian cloud). Consider a Gaussian cloud of n points in R™, which is formed by i.i.d.
random vectors gi,...,gn ~ N (0,1,,) . Suppose that

n > exp(Cm)

with large enough absolute constant C. Show that with high probability, the convexr hull the Gaussian cloud
is approxzimately a Fuclidean ball with radius ~ /logn.

A random projection of a set T" in R™ onto an m dimensional subspace approximately preserves the
geometry of T if m = d(T). For smaller m, the projected set PT becomes approximately a round ball of
diameter ~ w4 (T'), and its size does not shrink with m.
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