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Unfamiliar knowledge in class

Name: Weihao LI, Netid: 12243473

Learn Toeplitz matrix

• Trace of a matrix is the sum of its eigenvalues

• The weak norm (or Hilbert-Schmidt norm) of an n× n matrix A = [ak,j ] is defined by

|A| =

 1

n

n−1∑
k=0

n−1∑
j=0

|ak,j |2
1/2

=

(
1

n
Tr [A∗A]

)1/2

=

(
1

n

n−1∑
k=0

λk

)1/2

The quantity
√
n|A| is sometimes called the Frobenius norm. A=URU∗, α = diag(R),

|A|2 ≥ 1
n

∑n−1
k=0 |αk|

2
, with equality iff A is normal.

• The Hilbert-Schmidt norm is the ”weaker” of the two norms since

‖A‖2 = max
k

λk ≥
1

n

n−1∑
k=0

λk = |A|2

A matrix is said to be bounded if it is bounded in both norms.

• |GH| ≤ ‖G‖|H|

• (Definition) Two sequences of n × n matrices {An} and {Bn} are said to be asymptotically
equivalent if

1. An and Bn are uniformly bounded in strong (and hence in weak) norm:

‖An‖ , ‖Bn‖ ≤M <∞, n = 1, 2, . . .

2. An −Bn = Dn goes to zero in weak norm as n→∞

lim
n→∞

|An −Bn| = lim
n→∞

|Dn| = 0

Asymptotic equivalence of the sequences {An} and {Bn} will be abbreviated An ∼ Bn

• Theorem 2.1. Let {An} and {Bn} be sequences of matrices with eigenvalues {αn, i} and {βn, i} ,
respectively.

(1) If An ∼ Bn, then limn→∞ |An| = limn→∞ |Bn|
(2) If An ∼ Bn and Bn ∼ Cn, then An ∼ Cn (3) If An ∼ Bn and Cn ∼ Dn, then AnCn ∼ BnDn

(4) If An ∼ Bn and
∥∥A−1n ∥∥ ,∥∥B−1n ∥∥ ≤ K < ∞, all n, then A−1n ∼ B−1n (5) If AnBn ∼ Cn and∥∥A−1n ∥∥ ≤ K <∞, then Bn ∼ A−1n Cn

(6) If An ∼ Bn, then there are finite constants m and M such that m ≤ αn,k, βn,k ≤ M, n =
1, 2, . . . k = 0, 1, . . . , n− 1

1
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• Lemma 2.4. Given two matrices A and B with eigenvalues {αk} and {βk} , respectively, then∣∣∣∣∣ 1n
n−1∑
k=0

αk −
1

n

n−1∑
k=0

βk

∣∣∣∣∣ ≤ |A−B|
Proof:∑n−1
k=0 αk −

∑n−1
k=0 βk = Tr(A)− Tr(B) = Tr(D). Applying the Cauchy-Schwarz inequality

|Tr(D)|2 =

∣∣∣∣∣
n−1∑
k=0

dk,k

∣∣∣∣∣
2

≤ n
n−1∑
k=0

|dk,k|2

≤ n
n−1∑
k=0

n−1∑
j=0

|dk,j |2 = n2|D|2

• Corollary 2.1. Given two sequences of asymptotically equivalent matrices {An} and {Bn} with
eigenvalues {αn,k} and {βn,k} , respectively, then

lim
n→∞

1

n

n−1∑
k=0

(αn,k − βn,k) = 0

Proof: Let Dn = {dk,j} = An − Bn. we have limn→∞
1
n Tr (Dn) = 0 Dividing by n2, and taking

the limit, results in

0 ≤
∣∣∣∣ 1n Tr (Dn)

∣∣∣∣2 ≤ |Dn|2
n→∞−→ 0

Corollary can be interpreted as saying the sample or arithmetic means of the eigenvalues of two
matrices are asymptotically equal if the matrices are asymptotically equivalent.

• Corollary 2.2. Given two sequences of asymptotically equivalent Hermitian matrices {An} and
{Bn} with eigenvalues {αn,k} and {βn,k} respectively, then

lim
n→∞

1

n

n−1∑
k=0

(
α2
n,k − β2

n,k

)
= 0

Proof:
|Dn| ≥ ||An| − |Bn||

=

∣∣∣∣∣∣
√√√√ 1

n

n−1∑
k=0

α2
n,k −

√√√√ 1

n

n−1∑
k=0

β2
n,k

∣∣∣∣∣∣ n→∞−→ 0

• Theorem 2.2. Let {An} and {Bn} be asymptotically equivalent sequences of matrices with eigen-
values {αn,k} and {βn,k} , respectively. Then for any positive integer s the sequences of matrices
{Asn} and {Bsn} are also asymptotically equivalent,

lim
n→∞

1

n

n−1∑
k=0

(
αsn,k − βsn,k

)
= 0

Proof: Let An = Bn +Dn as in the proof of Corollary 2.1 and consider Asn − Bsn , ∆n, since the
eigenvalues of Asn are αsn,k. using binomial expansion: Asn − Bsn = (Bn +Dn)s − Bsn. The matrix
∆n is a sum of several terms each being a product of Dn ’s and Bn ’s, but containing at least one
Dn. Then use inequality |GH| ≤ ‖G‖|H|, we can get |∆n| ≤ K |Dn|

n→∞−→ 0 which imply

lim
n→∞

1

n
Tr (∆n) = 0
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• Corollary 2.3. Suppose that {An} and {Bn} are asymptotically equivalent sequences of matrices
with eigenvalues {αn,k} and {βn,k} respectively, and let f(x) be any polynomial. Then

lim
n→∞

1

n

n−1∑
k=0

(f (αn,k)− f (βn,k)) = 0

• Theorem 2.3. (Weierstrass) If F (x) is a continuous complex function on [a, b], there exists a
sequence of polynomials pn(x) such that

lim
n→∞

pn(x) = F (x)

uniformly on [a, b], any continuous function defined on a real interval can be approximated arbi-
trarily closely and uniformly by a polynomial.

• Theorem 2.4. Let {An} and {Bn} be asymptotically equivalent sequences of Hermitian matrices
with eigenvalues {αn,k} and {βn,k} , respectively. From Theorem 2.1 there exist finite numbers m
and M such that

m ≤ αn,k, βn,k ≤M, n = 1, 2, . . . k = 0, 1, . . . , n− 1

Let F (x) be an arbitrary function continuous on [m,M ]. Then

lim
n→∞

1

n

n−1∑
k=0

(F (αn,k)− F (βn,k)) = 0

• Corollary 2.4. Let {An} and {Bn} be asymptotically equivalent sequences of Hermitian matrices
with eigenvalues {αn,k} and {βn,k} , respectively, such that αn,k, βn,k ≥ m > 0. Then if either limit

exists,i.e limn→∞
1
n

∑n−1
k=0 F (αn,k) , limn→∞

1
n

∑n−1
k=0 F (βn,k), then

lim
n→∞

(detAn)
1/n

= lim
n→∞

(detBn)
1/n

Proof: From Theorem 2.4 we have for F (x) = lnx

lim
n→∞

1

n

n−1∑
k=0

lnαn,k = lim
n→∞

1

n

n−1∑
k=0

lnβn,k

and hence

lim
n→∞

exp

[
1

n
ln

n−1∏
k=0

αn,k

]
= lim
n→∞

exp

[
1

n
ln

n−1∏
k=0

βn,k

]
equivalently

lim
n→∞

exp

[
1

n
ln detAn

]
= lim
n→∞

exp

[
1

n
ln detBn

]
Remark: The difficulty with allowing the eigenvalues to approach 0 is that their logarithms are
not bounded. Furthermore, the function ln x is not continuous at x = 0, so Theorem 2.4 does not
apply.
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Circulant Matrices

C =



c0 c1 c2 · · · cn−1

cn−1 c0 c1 c2
...

cn−1 c0 c1
. . .

...
. . .

. . .
. . . c2

c1
c1 · · · cn−1 c0



• The eigenvalues ψk and the eigenvectors y(k) of C are the solutions of

Cy = ψy

or, equivalently, of the n difference equations

m−1∑
k=0

cn−m+kyk +

n−1∑
k=m

ck−myk = ψym;m = 0, 1, . . . , n− 1

One can solve difference equations as one solves differential equations — by guessing an intuitive
solution and then proving that it works. Since the equation is linear with constant coefficients a
reasonable guess is yk = ρk (analogous to y(t) = esτ in linear time invariant differential equations).

We have ρ−n = 1, i.e., ρ is one of the n distinct complex nth roots of unity, then we have an

eigenvalue ψ =
∑n−1
k=0 ckρ

k with corresponding eigenvector y = n−1/2
(
1, ρ, ρ2, . . . , ρn−1

)T
• Choosing ρm as the complex nth root of unity, ρm = e−2πim/n, we have eigenvalue

ψm =

n−1∑
k=0

cke
−2πimk/n

and eigenvector y(m) = 1√
n

(
1, e−2πim/n, · · · , e−2πim(n−1)/n)T Thus from the definition of eigen-

values and eigenvectors,
Cy(m) = ψmy

(m),m = 0, 1, . . . , n− 1

• Definition: The discrete Fourier transform transforms a sequence of N complex numbers {xn} :=
x0, x1, . . . , xN−1 into another sequence of complex numbers, {Xk} := X0, X1, . . . , XN−1, which is
defined by

Xk =

N−1∑
n=0

xn · e−
i2π
N kn

=

N−1∑
n=0

xn ·
[
cos

(
2π

N
kn

)
− i · sin

(
2π

N
kn

)]
The discrete Fourier transform is an invertible, linear transformation. The inverse transform is
given by:

xn =
1

N

N−1∑
k=0

Xk · ei2πkn/N

• Theorem 3.1. Every circulant matrix C has eigenvectors

y(m) = 1√
n

(
1, e−2πim/n, · · · , e−2πim(n−1)/n)T ,m = 0, 1, . . . , n− 1, and corresponding eigenvalues

ψm =

n−1∑
k=0

cke
−2πimk/n
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and can be expressed in the form C = UΨU∗, where U has the eigenvectors as columns in order
and Ψ is diag (ψk) . In particular all circulant matrices share the same eigenvectors, the same matrix U
works for all circulant matrices, and any matrix of the form C = UΨU∗ is circulant.

• Let C = {ck−j} and B = {bk−j} be circulant n× n matrices with eigenvalues

ψm =

n−1∑
k=0

cke
−2πimk/n, βm =

n−1∑
k=0

bke
−2πimk/n

respectively. Then

1. C and B commute and
CB = BC = UγU∗

where γ = diag (ψmβm) , and CB is also a circulant matrix.

2. C +B is a circulant matrix and
C +B = UΩU∗

where Ω = {(ψm + βm) δk−m}
3. If ψm 6= 0;m = 0, 1, . . . , n− 1, then C is nonsingular and

C−1 = UΨ−1U∗

• We shall see that suitably chosen sequences of circulant matrices asymptotically approximate se-
quences of Toeplitz matrices and hence results similar to those in Theorem 3.1 will hold asymp-
totically for sequences of Toeplitz matrices.

Toeplitz Matrices

• Consider the infinite sequence {tk} and define the corresponding sequence of n×n Toeplitz matrices
Tn = [tk−j ; k, j = 0, 1, . . . , n− 1]. The most general is to assume that the tk are square summable,

i.e.,
∑∞
k=−∞ |tk|

2
<∞

• We will make the stronger assumption that the tk are absolutely summable, i.e.,
∑∞
k=−∞ |tk| <∞

Why stronger?
∑∞
k=−∞ |tk|

2 ≤
{∑∞

k=−∞ |tk|
}2

• Absolutely summable make sure Fourier series f(λ) exists:

f(λ) =

∞∑
k=−∞

tke
ikλ = lim

n→∞

n∑
k=−n

tke
ikλ

it converges uniformly:∣∣∣∣∣f(λ)−
n∑

k=−n

tke
ikλ

∣∣∣∣∣ =

∣∣∣∣∣
−n−1∑
k=−∞

tke
ikλ +

∞∑
k=n+1

tke
ikλ

∣∣∣∣∣
≤

∣∣∣∣∣
−n−1∑
k=−∞

tke
ikλ

∣∣∣∣∣+

∣∣∣∣∣
∞∑

k=n+1

tke
ikλ

∣∣∣∣∣
≤
−n−1∑
k=−∞

|tk|+
∞∑

k=n+1

|tk|

Thus given ε there is a single N, not depending on λ, such that∣∣∣∣∣f(λ)−
n∑

k=−n

tke
ikλ

∣∣∣∣∣ ≤ ε, all λ ∈ [0, 2π], if n ≥ N
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• Furthermore, if absolutely summable, then f(λ) is Riemann integrable and the tk can be recovered
from f from the ordinary Fourier inversion formula:

tk =
1

2π

∫ 2π

0

f(λ)e−ikλdλ

• A sequence of Toeplitz matrices Tn = [tk−j ] for which the tk are absolutely summable is said to be
in the Wiener class,. Similarly, a function f(λ) defined on [0, 2π] is said to be in the Wiener class
if it has a Fourier series with absolutely summable Fourier coefficients. It will often be of interest
to begin with a function f in the Wiener class and then define the sequence of of n × n Toeplitz
matrices

Tn(f) =

[
1

2π

∫ 2π

0

f(λ)e−i(k−j)λdλ; k, j = 0, 1, · · · , n− 1

]
The Toeplitz matrix Tn(f) will be Hermitian if and only if f is real.

• Functions f in the Wiener class are bounded since |f(λ)| ≤
∑∞
k=−∞

∣∣tkeikλ∣∣ ≤∑∞k=−∞ |tk| so that
supf , inff :

m|f |,M|f | ≤
∞∑

k=−∞

|tk|

Bounds on Eigenvalues of Toeplitz Matrices

• Lemma 4.1. Let τn,k be the eigenvalues of a Toeplitz matrix Tn(f) If Tn(f) is Hermitian, then

mf ≤ τn,k ≤Mf

Whether or not Tn(f) is Hermitian,
‖Tn(f)‖ ≤ 2M|f |

so that the sequence of Toeplitz matrices {Tn(f)} is uniformly bounded over n if the essential
supremum of |f | is finite.

•

|Tn(f)|2 =
1

n

n−1∑
k=0

n−1∑
j=0

|tk−j |2

=
1

n

n−1∑
k=−(n−1)

(n− |k|) |tk|2

=

n−1∑
k=−(n−1)

(1− |k|/n) |tk|2

1 Appendix

The knowledge is based on following tutorial: https://ee.stanford.edu/~gray/toeplitz.pdf

https://ee.stanford.edu/~gray/toeplitz.pdf
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https://www.stat.berkeley.edu/~bartlett/courses/153-fall2010/lectures/19.pdf

• If a time series {Xt} has autocovariance γ satisfying
∑∞
h=−∞ |γ(h)| < ∞, then we define its

spectral density as

f(ν) =

∞∑
h=−∞

γ(h)e−2πiνh

for −∞ < ν <∞
Ways to estimate f(ν), (1) replace by γ̂(·) (2) periodogram

f̂(ν) =

n−1∑
h=−n+1

γ̂(h)e−2πiνh

for −1/2 ≤ ν ≤ 1/2

• Discrete Fourier transform: For a sequence (x1, . . . , xn) , define the discrete Fourier transform
(DFT) as (X (ν0) , X (ν1) , . . . , X (νn−1)) , where

X (νk) =
1√
n

n∑
t=1

xte
−2πiνkt

and νk = k/n (for k = 0, 1, . . . , n− 1) are called the Fourier frequencies. (Think of
{νk : k = 0, . . . , n− 1} as the discrete version of the frequency range ν ∈ [0, 1].)

Remark: View the DFT as a representation of x in a different basis, the Fourier basis

• Orthonormal basis: Suppose that a set {φj : j = 0, 1, . . . , n− 1} of n vectors in Cn are orthonormal:

〈φj , φk〉 =

{
1 if j = k
0 otherwise

Then these {φj} span the vector space Cn, and so for any vector x, we can write x in terms of this

new orthonormal basis: x =
∑n−1
j=0 〈φj , x〉φj

• {
ej =

1√
n

(
e2πiνj , e2πi2νj , . . . , e2πinνj

)′
: j = 0, . . . , n− 1

}
〈ej , ek〉 =

{
1 if j = k
0 otherwise

• The vector of discrete Fourier transform coefficients (X (ν0) , . . . , X (νn−1)) is the representation
of x in the Fourier basis.

x =

n−1∑
j=0

〈ej , x〉 ej =

n−1∑
j=0

X (νj) ej

• An alternative way to represent the DFT

X (νj) = 〈ej , x〉 =
1√
n

n∑
t=1

e−2πitνjxt

=
1√
n

n∑
t=1

cos (2πtνj)xt − i
1√
n

n∑
t=1

sin (2πtνj)xt

= Xc (νj)− iXs (νj)

https://www.stat.berkeley.edu/~bartlett/courses/153-fall2010/lectures/19.pdf
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• The periodogram is defined as
I (νj) = |X (νj)|2

=
1

n

∣∣∣∣∣
n∑
t=1

e−2πitνjxt

∣∣∣∣∣
2

= X2
c (νj) +X2

s (νj)

• Orthonormality of the ej implies that we can write

x∗x =

n−1∑
j=0

X (νj) ej

∗n−1∑
j=0

X (νj) ej


=

n−1∑
j=0

|X (νj)|2 =

n−1∑
j=0

I (νj)

• Discrete version of continuous version

I (νj) as the discrete version of f(νj)

(1/n)
∑
νj
· as the discrete version of

∫
ν
·dν

For x̄ = 0, we can write this as σ̂2
x = 1

n

∑n
t=1 x

2
t = 1

n

∑n−1
j=0 I (νj). This is the discrete analog of

the identity σ2
x = γx(0) =

∫ 1/2

−1/2 fx(ν)dν

• Why is the periodogram at a Fourier frequency (that is, ν = νj ) the same as computing f(ν) from
the sample autocovariance?

I (νj) =
1

n

∣∣∣∣∣
n∑
t=1

e−2πitνjxt

∣∣∣∣∣
2

=
1

n

∣∣∣∣∣
n∑
t=1

e−2πitνj (xt − x̄)

∣∣∣∣∣
2

=
1

n

(
n∑
t=1

e−2πitνj (xt − x̄)

)(
n∑
t=1

e2πitνj (xt − x̄)

)

=
1

n

∑
s,t

e−2πi(s−t)νj (xs − x̄) (xt − x̄) =

n−1∑
h=−n+1

γ̂(h)e−2πihνj = f̂(νj)

Recall νj 6= 0 implies
∑n
t=1 e

−2πitνj = 0.

• is discrete version good enough to approximate the continuous version, let us see the asymptotic
behavior of the periodogram I(ν).

example: Suppose that X1, . . . , Xn are i.i.d. N
(
0, σ2

)
(Gaussian white noise)

Xc (νj) =
1√
n

n∑
t=1

cos (2πtνj)xt, Xs (νj) =
1√
n

n∑
t=1

sin (2πtνj)xt

we have that Xc (νj) and Xs (νj) are normal, with

EXc (νj) = EXs (νj) = 0

Var (Xc (νj)) =
σ2

n

n∑
t=1

cos2 (2πtνj)

=
σ2

2n

n∑
t=1

(cos (4πtνj) + 1) =
σ2

2

Similarly, Var (Xs (νj)) = σ2/2
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Cov (Xc (νj) , Xs (νj)) = Cov (Xc (νj) , Xc (νk)) = Cov (Xs (νj) , Xs (νk)) = Cov (Xc (νj) , Xs (νk)) = 0
f(νj) = σ2

2

f(νj)
I (νj) =

2

σ2
I (νj) =

2

σ2

(
X2
c (νj) +X2

s (νj)
)
∼ χ2

2

So EI (ν̂j) = f(νj)

• Generally, as n increases, ν̂(n) → ν under some condition, f
(
ν̂(n)

)
→ f(ν). In this case, we have

2

f(ν)
I
(
ν̂(n)

)
=

2

f(ν)

(
X2
c

(
ν̂(n)

)
+X2

s

(
ν̂(n)

))
d→ χ2

2

Thus,

EI
(
ν̂(n)

)
=
f(ν)

2
E

(
2

f(ν)

(
X2
c

(
ν̂(n)

)
+X2

s

(
ν̂(n)

)))
→ f(ν)

2
E
(
Z2
1 + Z2

2

)
= f(ν)

Periodogram is asymptotically unbiased.
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HANSON-WRIGHT INEQUALITY

http://www-personal.umich.edu/~rudelson/papers/rv-Hanson-Wright.pdf https://sites.

ualberta.ca/~omarr/publications/subgaussians.pdf

• Proposition If X is b-subgaussian, and E(X) = 0 and Var(X) ≤ b2

Sub gaussian decay at least as fast as gaussian.

• For a centered random variable X, the following statements are equivalent:

(1) Laplace transform condition: ∃b > 0, ∀t ∈ R, EetX ≤ eb2t2/2

(2) subgaussian tail estimate: ∃c > 0, ∀λ > 0, P(|X| ≥ λ) ≤ 2e−cλ
2

(3) ψ2 -condition: ∃a > 0, EeaX2 ≤ 2

• Proposition If X is b-subgaussian, then for any p > 0 one has

E|X|p ≤ p2
p
2 bpΓ

(p
2

)
Consequently, for p ≥ 1

‖X‖Lp = (E|X|p)1/p ≤ Cb√p

Conversely, if a centered random variable X satisfies (E|X|p)1/p ≤ Cb
√
p for all p ≥ 1, then X is

subgaussian.

Proof:

E|X|p =

∫ ∞
0

ptp−1P(|X| > t)dt ≤
∫ ∞
0

ptp−1 · 2e−t
2/2b2dt

using the substitution u = t2/2b2 the last integral is

= p
(
2b2
) p

2
∫∞
0
u
p
2−1e−udu

= p2
p
2 bpΓ

(
p
2

)
In particular, using Stirling’s formula(

√
2πnn+

1
2 e−n ≤ n! ≤ enn+

1
2 e−n, x1/x ≤ e1/e) one gets

(E|X|p)1/p ≤ Cb
√
p Conversely, suppose X satisfies (E|X|p)1/p ≤ Cb

√
p for all p ≥ 1. Then

using the Taylor expansion for the exponential function and Lebesgue’s Dominated Convergence
Theorem, for any a > 0 we have

EeaX
2

=

∞∑
n=0

anE
(
|X|2n

)
n!

= 1 +

∞∑
n=1

anE
(
|X|2n

)
n!

≤ 1 +

∞∑
n=1

an(Cb
√

2n)2n

n!
=

∞∑
n=0

an(Cb
√

2n)2n

n!

Taking a small enough one gets EeaX2 ≤ 2

• Theorem 1.1 (Hanson-Wright inequality). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with
independent components Xi which satisfy EXi = 0 and ‖Xi‖ψ2

≤ K. Let A be an n × n matrix.
Then, for every t ≥ 0

P
{∣∣X>AX − EX>AX

∣∣ > t
}
≤ 2 exp

[
−cmin

(
t2

K4‖A‖2F
,

t

K2‖A‖2

)]
K is subgaussian parameter, e.g: σ

•

http://www-personal.umich.edu/~rudelson/papers/rv-Hanson-Wright.pdf
https://sites.ualberta.ca/~omarr/publications/subgaussians.pdf
https://sites.ualberta.ca/~omarr/publications/subgaussians.pdf


Weihao LI – Unfamiliar knowledge in class 11

Marchenko-Pastur Law

http://www.math.wisc.edu/~valko/courses/833/2009f/lec_6_7.pdf

• Let
X = (X1,X2, . . . ,Xn) ∈ Rp×n

where Xij are iid, E (Xij) = 0, E
(
X2
ij

)
= 1 and p = p(n) Define

Sn =
1

n
XXT ∈ Rp×p

and let
λ1 ≤ λ2 ≤ . . . ≤ λp

denote the eigenvalues of the matrix Sn

Define the random spectral measure by

µn =
1

p

p∑
i=1

δλi

• (Marchenko-Pastur Law) LetSn, µn be as above. Assume that p/n
n→∞−→ y ∈ (0, 1]. Then we

have
µn(·, ω)⇒ µ a.s

where µ is a deterministic measure whose density is given by

dµ

dx
=

1

2πxy

√
(b− x)(x− a)1(a≤x≤b)

Here a and b are functions of y given by

a(y) = (1−√y)2, b(y) = (1 +
√
y)2

• Let X1, . . . , Xn be independent random variables with zero means and finite absolute moments of
order p = 2. Then

E |Sn|p 5 Cpn
p/2−1

n∑
k=1

E |Xk|p

https://projecteuclid.org/euclid.aoms/1177697526

Some names: Marcinkiewicz–Zygmund inequality, Khintchine inequality and Rosenthal inequalities

http://www.math.wisc.edu/~valko/courses/833/2009f/lec_6_7.pdf
https://projecteuclid.org/euclid.aoms/1177697526
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Ljung–Box test

• The Ljung-Box test (named for Greta M. Ljung and George E. P. Box) is a type of statistical test
of whether any of a group of autocorrelations of a time series are different from zero. Instead of
testing randomness at each distinct lag, it tests the ”overall” randomness based on a number of
lags, and is therefore a portmanteau test.

• A portmanteau test is a type of statistical hypothesis test in which the null hypothesis is well
specified, but the alternative hypothesis is more loosely specified.

• The Ljung-Box test may be defined as:

– H0 : The data are independently distributed (i.e. the correlations in the population from
which the sample is taken are 0, so that any observed correlations in the data result from
randomness of the sampling process).

– Ha : The data are not independently distributed; they exhibit serial correlation.

• The test statistics is given by :

Q = n(n+ 2)

h∑
k=1

ρ̂2k
n− k

where n is the sample size, ρ̂k is the sample autocorrelation at lag k, and h is the number of lags
being tested. Under H0 the statistic Q asymptotically follows a χ2

(h). For significance level a, the

critical region for rejection of the hypothesis of randomness is: Q > χ2
1−α,h
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•
α(X,Y ) = 2 sup

(x,y)∈R2

|P(X > x, Y > y)− P(X > x)P(Y > y)|

• Rosenblatt strong mixing coefficient

α(A,B) = sup
B∈B

α (A, IB) = 2 sup {| Cov (IA, IB) |: (A,B) ∈ A× B}

This coefficient vanishes if and only if the σ -fields are independent.

• |Cov (IA, IB)| ≤
√

Var IA Var IB ≤ 1/4 it follows that 0 ≤ α(A,B) ≤ 1/2

• Different formulation:

α(A,B) = sup {|Cov (IA − IAc , IB)| : (A,B) ∈ A× B}

Cov (IA − IAc , IB) = E ((P(B | A)− P(B)) (IA − 1Ac))

and consequently, for a fixed B, the maximum over A is reached by the measurable set A = (P(B |
A) > P(B)). Consequently α(A,B) = sup{E(|P(B | A)− P(B)|) : B ∈ B}

• In the same way, one can prove that

α(A, X) = sup
x∈R

E(|P(X ≤ x | A)− P(X ≤ x)|)

• A mixing time series can be viewed as a sequence of random variables for which the past and
distant future are asymptotically independent.

The idea is to define mixing coefficients to measure the strength (in different ways) of dependence
for the two segments of a time series that are apart from each other in time.

•
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Joint Estimation of Multiple Graphical Models from High Dimensional Time Series

1 Introduction

Graph is a good tool to understand and visualize the dependence relationship. As we all know,
under the normality assumption, the graphical model can be represented by precision matrix,
which motivates many researchers to propose different methods to estimate the the precision
matrix. There are volumes of literature on the precision matrix estimation based on n independent
and identical distributed normal random variables. In this paper, researcher focus on the non-
identical distributed random variables, which is motivated by brain connectivity networks: since
the relationship between different nodes in our brain can change as we grow up, so different age
can have different graph structure (precision matrix). Also, this paper consider the temporal
dependence for each subjects, that is to say, we have n subjects, each subject is a time series with
length T .

2 Literature review

There are three main methods to estimated a single Gaussian graphical model for high dimen-
sion case. Suppose Xi = (Xi1, ..., Xip) ∼ N(0,Σ = Ω−1), if we regress X1 ∼ X−1 based on the
condition distribution of multivariate normal, we can have X1|X−1 ∼ N(−Ω−1

11 Ω1,−1X−1,Ω
−1
11 ),

then Meinshausen and Bühlmann (2006) apply Lasso to estimate each column of the precision
matrix and they show the consistent estimation for sparse graph structure is achieved. Second
main method direct estimate the the precision matrix based on the maximum likelihood. Stan-
ford researcher(FHT, 2008) propose to estimate Θ directly using the `1 penalty to encourage the
sparsity. But since the computation of FHT method involve the determinant of the large matrix,
which is hard to compute for very large p, in order to achieve the large scale computation, Tony
Cai use the idea of Dantzig method(CLIME) to decompose original problem to p sub-problem,
which is computationally easy and we can apply parallel computing to fasten the computation.
Also in low dimension, Drton and Perlman use the hypothesis testing procedure to test whether
edge between i and j should be included or not, since there are p(p−1)

2
testing problem, they use

Bonferroni correction to control the error conservatively. Detail of above mention method is in
attached appendix.

Above method rely on the assumption that we have i.i.d samples, but this assumption is not
so realistic since the model will change over time, the relaxing assumption is that subjects are
independent and non-identical distributed. Guo et al consider case when subjects fall into K

1
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different categories with each categories has there own graph structure, they impose additional
penalty in graphical lasso to encourage the sparsity. Estimation of multiple Graphical models was
also investigated by Zhou (2010), they consider white noise setting with different time has different
covariance matrix(distribution evolves over time), they apply the kernel smoothing idea to get a
weighted covariance matrix at any time point and then use graphical lasso to get the estimated
graph.

3 Model and method

In this paper, author consider the time series setting and aim to estimate the conditional inde-
pendence structure of the time series. Let {Xu}u∈[0,1] be a series of d -dimensional random vectors
indexed by the label u, there is a natural ordering of the subjects , we can view u as normalized
age for each subject. For each subject Xui , we have T observations xi1, . . . ,xiT ∈ Rd with a
temporal dependence structure among them. It assumes that {xit}Tt=1 follows a lag one stationary
VAR model:

xit = A (ui)xi(t−1) + εit, for i = 1, . . . , n, t = 2, . . . , T

and xit ∼ Nd {0,Σ (ui)} for t = 1, . . . , T .
Since proposed model is motivated by brain network estimation, we can find the correspondence

between statistical model and real problem to help us better understand the model. Suppose we
have n people with age (u) from 10 to 20, for each person we get his brain image(xit) every 5
minute, it is intuitive to understand that the brain image at time t depends on that of time t-5,
t-10, etc. Each image compose d parts, we want to research on the graphical relation between
these d parts. For simplicity, we may assume that each image only depends on the image five
minutes ago, we can collect T=200 sequential images for each person.

Given the target time u0, we first estiamte the covariance S(u0) :

S (u0) :=
n∑
i=1

ωi (u0, h) Σ̂i

where ωi (u0, h) is a weight function and Σ̂i is the sample covariance matrix of xi1, . . . ,xiT

ωi (u0, h) :=
c (u0)

nh
K

(
ui − u0

h

)
, Σ̂i :=

1

T

T∑
t=1

xitx
>
it ∈ Rd×d

Here c (u0) = 2I (u0 ∈ {0, 1}) + I {u0 ∈ (0, 1)} is a constant depending on whether u0 is on the
boundary or not, and h is the bandwidth parameter. The choices of Kernel function can be
Epanechnikov kernel: K(s) = 3 (1− s2) I(|s| ≤ 1)/4 for example.

After getting the estimated covariance matrix S(0), we put it into CLIME algorithm to get
the estimated sparse precision matrix. i.e

Ω̂ (u0) = argmin
M∈Rd×d

∑
jk

|Mjk| , subject to ‖S (u0) M− Id‖max ≤ λ
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4 Theoretical property

Since estimating the covariance is the crucial step, we can first see whether the estimated covariance
matrix is good or not.

Under some smoothness and parameter assumptions , we have

max
jk

∣∣∣{S (u0)}jk −Σ (u0)jk

∣∣∣ = OP (

√
log d

Tnh
)

this rate can beat those methods which do not have group effect. Recall from the class,
apply the Hanson Wright inequality, we can get

max
i,j
|σ̂ij − σij| = OP (99

√
log p

n
)

The extra T term in the denominator characterizes the strength one can borrow across
different individuals information on parameter estimation. But in my view, the sharper
bound is due to increasing sample size(from n to nT).

The author also give convergence rate of i.i.d process for each subject, they compare the rate
of the i.i.d case with VAR(1) case, the results is given by:

VAR(1):

‖S (u0)−Σ (u0)‖max = OP

{ ξ supu∈[0,1] ‖Σ(u)‖2

1− supu∈[0,1] ‖A(u)‖2

√
log d

Tn

}1/2

+ n−
2

2+η


where ξ := supu∈[0,1]

maxj [Σ(u)]jj
minj [Σ(u)]jj

i.i.d

‖S (u0)−Σ (u0)‖max = OP

{(
log d

Tn

)1/3

+ n−
2

2+η

}
The rate for i.i.d case match with the rate in the paper of Zhou (2010) up to a logarithmic

factor. The rate of Zhou is OP

(√
logn
n1/3

)
. Remark: both rate of convergence depends on

specific choice of bandwidth parameter h.

As we see, the rate in the i.i.d case is sharper because i.i.d assumption is very strong and
unrealistic. Interestingly, we notice that the rate of convergence is negative related with the
spectrum norm of the transition matrix A. Intuitively, the spectrum norm of A describe the
magnitude of the dependence between xit and xi(t−1), the higher dependence, the less information
xi1, . . . ,xiT will give(think about the extreme case when A = I, then it is equivalent to have just
one sample for subject i; If A = 0, then it is equivalent to have T i.i.d samples for subject i).
Instead of explaining in a intuitive way, the author give proof for two special cases of A.
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• under the case A = diag (ρ1, . . . , ρd)

‖S (u0)−Σ (u0)‖max = OP

{ ξ supu∈[0,1] ‖Σ(u)‖2

1−maxj=1,...,d (|ρj|)

√
log d

Tn

}1/2

+ n−
2

2+η


• Under the case Aij = ρI(|i− j| = 1)

‖S (u0)−Σ (u0)‖max = OP

{ ξ supu∈[0,1] ‖Σ(u)‖2

1− 2|ρ| cos{π/(d+ 1)})

√
log d

Tn

}1/2

+ n−
2

2+η


For these two cases, ρ is used to measure the temporal dependence between two consecutive pair,
it is easy to see the magnitude of the dependence has a negative effect on the convergence rate of
covariance matrix.

In order to use the CLIME to estimate the sparse precision matrix, the standard assumption
is true precision matrix lying in uniformity class of matrices, i.e

Θ (u0) := {Σ (u0)}−1 ∈M (q = 0, s,Md) :=

{
M ∈ Rd×d : M � 0, max

1≤k≤d

d∑
j=1

|Mjk|0 ≤ s, ‖M‖1 ≤Md

}

Since we already get the bound for ‖S (u0)−Σ (u0)‖max, according to the theorem of Tong Cai
paper, we immediately get the bound : (with a specific choice of λ)

∥∥∥Θ̂ (u0)−Θ (u0)
∥∥∥

2
= OP

M2
ds

{ ξ supu∈[0,1] ‖Σ(u)‖2

1− supu∈[0,1] ‖A(u)‖2

√
log d

Tn

}1/2

+ n−
2

2+η


5 Summary and Discussion

The author generalize the previous research with i.i.d samples to the cases where there exists
a natural ordering (age) for n subjects, the underlying true convariance matrix change smoothly
according to this ordering (age). And for each subject, we observe a VAR(p) process with length
T . This kind of setting help the author to better deal with the resting state functional magnetic
resonance imaging (rs-fMRI) data, where there exist many natural orderings corresponding to
measures of health status, demographics, and many other subject-specific covariates.

As far I am concerned, we can also generalize the i.i.d setting with the following reasonable
setting: Since it is natural to assume that the covariance matrix at age t depends on the covariance
matrix at age (t-1), so instead of using kernel smoothing trick to build connection between covari-
ance matrix at different ages, we can also assume a autoregressive relation between consecutive
covariance matrix. That is to say, we can use Matrix autoregressive model (MAR(1)) model. The
task of this setting can be: we observe n subjects, each subject is VAR(1) process with length T ,
we are going to estimate the graph structure at time n+1. The first step of the estimation is same
with this paper: we get the sample covariance matrix Σ̂1, . . . , Σ̂n. Second step: there are two way
to predict the convariance matrix at time n+ 1. (Rong et al (2018))
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1. Using the idea of VAR(1) model, we can vectorize the covariance matrix and assume

vec
(
Σ̂t

)
= A vec

(
Σ̂t−1

)
+ vec (Et), we can apply the Dantzig method we learn in the class

to estimate the coefficient A. Then use ÂΣ̂n as estimate for time n+ 1.

2. Second idea is from Rong Chen paper, they assume Σ̂t = AΣ̂t−1B
′ +Et, and we can apply

the projection method they use to estimate A,B, then use ÂΣ̂nB̂
′ as estimate for time n+1.

The final step is to apply CLIME to Σ̂n+1 and get Ω̂n+1 as the estimate for precision matrix at
time n+ 1.
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Relation between graph and precision matrix:
Consider X = (X1, . . . , Xp)

T ∼ N (0,Ω−1) , where Ω ∈ Rp×p is a precision matrix with
entries Ωjk. Prove Ωjk = 0 if and only if Xj and Xk are conditional independent given all
other variables {Xl}l 6=j,k
Proof:
Reference: ”Graphical Models Lauriten 1995 Page 130”.
Block matrix inversion:(

A B
C D

)−1

=

(
E−1 −E−1G
−FE−1 D−1 + FE−1G

)
where E = A−BD−1C,F = D−1C and G = BD−1

Write down the covariance matrix as

P =

(
P11 P12

P21 P22

)
where P11 is covariance matrix of (Xi, Xj) and P22 is covariance matrix of V\ {Xi, Xj}
V\ {Xi, Xj} means all other variables {Xl}l 6=j,i
Let Ω = P−1. Similarly, write down Ω as

Ω =

(
Ω11 Ω12

Ω21 Ω22

)
By Block matrix inversion formula,

Ω−1
11 = P11 − P12P

−1
22 P21

We also know that P11 − P12P
−1
22 P21 is the covariance matrix of (Xi, Xj) |V\ {Xi, Xj} from

multivariate normal knowledge.
The partial correlation is therefore

ρXiXj ·V\{Xi,Xj} =

[
Ω−1

11

]
12√[

Ω−1
11

]
11

[
Ω−1

11

]
22

Inversion formula of 2 by 2 matrix,( [
Ω−1

11

]
11

[
Ω−1

11

]
12[

Ω−1
11

]
21

[
Ω−1

11

]
22

)
= Ω−1

11 =
1

det Ω11

(
[Ω11]22 − [Ω11]12

− [Ω11]21 [Ω11]11

)
Therefore,

ρXiXj ,V\Xi,Xj} =

[
Ω−1

11

]
12√[

Ω−1
11

]
11

[
Ω−1

11

]
22

=
− 1

det Ω11
[Ω11]12√

1
det Ω11

[Ω11]22
1

det Ω11
[Ω11]11

=
− [Ω11]12√

[Ω11]22 [Ω11]11

So Ωjk = 0 if and only if Xj and Xk are conditional independent given all other variables.



Weihao LI – Stat308 final project 7

(Mathias Drton and Michael D. Perlman (2007))

Σ−1 = {σij}, ρij·V \{i,j} = −σij√
σiiσjj

. Gaussian graphical models can be defined by pairwise
conditional independence hypotheses or equivalently by vanishing of partial correlations.
Considering the p(p− 1)/2 testing problems

Hij : ρij·V \{i,j} = 0 vs. Kij : ρij·V \{i,j} 6= 0

πij be the p -value of the test of hypothesis Hij. Then the graph Ĝ(α) that is selected at

level α has the adjacency matrix Â(α) = (âij(α)) ∈ Rp×p with entries

âij(α) =

{
1, if πij ≤ α
0, if πij > α

Since we use have low dimension assumption, we can invert our sample covariance matrix to
get sample partial correlation rij ·V \{i, j}, under the null hypothesis that ρij ·V \{i, j} = 0,
√
n− 2 · rij/

√
1− r2

ij has a t-distribution with n − 2 degrees of freedom. (rij is shorthand

for rij · V \{i, j})

(Meinshausen and Bühlmann (2006))
X ∈ Rp,X−1 ∈ Rp−1,Ω−1,1 = ΩT

1,−1 ∈ R(p−1)x1,Ω−1,−1 ∈ R(p−1)×(p−1),Ω−1 = Σ, we can
rewrite

X =


X1

X2
...
Xp

 =

[
X1

X−1

]
∼ N

(
0,

(
Ω11 Ω1,−1

Ω−1,1 Ω−1,−1

)−1
)

Apply the knowledge of block matrix inversion and conditional distribution of multivariate
gaussian =⇒ X1|X−1 ∼ N(−Ω−1

11 Ω1,−1X−1,Ω
−1
11 ) Then we view X−1 as predicator variable

in regression, −Ω−1
11 Ω1,−1 as β, Ω−1

11 as σ2, then we run the Lasso to get β̂, σ̂

(Friedman, J., Hastie, T., and Tibshirani, R. (2008)—–graphical lasso)
let Θ = Σ−1, sample covariance Σ̂ = 1

n

∑n
i=1XiX

T
i , ‖Θ‖1 =

∑
jk |Θjk|

Θ̂ = argmax
Θ�0

log det Θ− tr(Σ̂Θ)− ρ‖Θ‖1

There are some issue on the asymmetry of the graphical lasso estimator, which can be found
at https://arxiv.org/abs/1111.2667, in that discussion, they also propose some ways to
do symmetrization fo the estimator. ”A note on the lack of symmetry in the graphical lasso”

https://arxiv.org/abs/1111.2667
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(Cai, T., Liu, W., and Luo, X. (2011)——-CLIME)
We want to estimate population precision matrix Ω0. CLIME estimator: Let Ω̂1 be the
solution of the following optimization problem:

min ‖Ω‖1 subject to: |ΣnΩ− I|∞ ≤ λn, Ω ∈ Rp×p

The final CLIME estimator of Ω0 is obtained by symmetrizing Ω̂1 as follows. Write Ω̂1 =(
ω̂1
ij

)
=
(
ω̂1

1, . . . , ω̂
1
p

)
. The CLIME estimator Ω̂ of Ω0 is defined as

Ω̂ = (ω̂ij) , where ω̂ij = ω̂ji = ω̂1
ijI
{∣∣ω̂1

ij

∣∣ ≤ ∣∣ω̂1
ji

∣∣}+ ω̂1
jiI
{∣∣ω̂1

ij

∣∣ > ∣∣ω̂1
ji

∣∣}
parallel computing is possible since Ω̂1 = B̂, where B̂ :=

(
β̂1, . . . , β̂p

)
and β̂i are solutions

to
min |β|1 subject to |Σnβ − ei|∞ ≤ λn

(Zhou, S., Lafferty, J., and Wasserman, L. (2010))
Let Zt ∼ N(0,Σ(t)) be independent.

Ŝn(t) =

∑
swstZsZ

T
s∑

swst

is a weighted covariance matrix, with weights wst = K
(
|s−t|
hn

)
given by a symmetric non-

negative function kernel over time. Then we plug Ŝn(t) into graphical lasso algorithm to get
the graph of time t. i.e

Θ̂n(t) = argmax
Θ�0

log det Θ− tr(Ŝn(t)Θ)− ρ‖Θ‖1
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How can we do better, how improve in the future, possible tools to solve that problem?
script? In order to represent such models in a way that is easy to visualize and communicate, it

is natural to draw a graph with one vertex for each variable and an edge between any two variables
that exhibit a desired type of dependence.
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When I learn the concentration bound, there are many proof which exploits the properties of
the Gaussian distribution, which motivate me to do a review on this fancy distribution. I plan to
spend one day on normal distribution in order to be familiar with magic staff.

The knowledge I want to learn involve moment, pdf(Mills ratio this kind of thing), rotation
invariance, concentration bound, etc
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• (Stein’s Lemma) Let X ∼ n (θ, σ2) , and let g be a differentiable function satisfying
E |g′(X)| <∞. Then

E[g(X)(X − θ)] = σ2Eg′(X)

• (Maximal entropy) Among all distributions on R with mean µ variance σ2, N(µ, σ2)
has the maximal entropy. Proof. For any distribution P with mean µ variance σ2

D(P‖Φ) =

∫
p log p−

∫
p log φ

=

∫
p log p−

∫
p(x)[−1

2
log(2πσ)− (x− µ)2

2σ2
]dx

=

∫
p log p−

∫
φ(x)[−1

2
log(2πσ)− (x− µ)2

2σ2
]dx

=

∫
p log p−

∫
φ log φ

= H(Φ)−H(P )

The conclusion follows the property D(P‖Φ) ≥ 0

• (Mills ratio): Let φ(z) = 1√
2π
e−z

2/2 be the density function of a standard normal, we

have φ′(z) + zφ(z) = 0. Then :

φ(z)

(
1

z
− 1

z3

)
≤ P[Z ≥ z] ≤ φ(z)

(
1

z
− 1

z3
+

3

z5

)
for all z > 0

Proof:

Using the above, we may note first that P[Z ≥ z] =
∫∞
z
φ(t)dt, and substituting

φ(z) = −φ′(z)
z

and using integration by parts, we get∫ ∞
z

φ(t)dt =

∫ ∞
z

−φ′(t)
t

dt =

[
−φ(t)

t

]∞
z

−
∫ ∞
z

φ(t)

t2
dt

since limt→∞
−φ(t)
t

= 0, we get the top as φ(z)
z
−
∫∞
z

φ(t)
t2
dt, where we may use the same

substitution and apply integration by parts again:

φ(z)
z
−
∫∞
z
−φ′(t)
t3

dt = φ(z)
z

+
[
φ(t)
t3

]∞
z
−
∫∞
z
−3φ(t)
t4

dt

= φ(z)
z
− φ(z)

z3
+
∫∞
z

3φ(t)
t4
dt

Thus since
∫∞
z

3φ(t)
t4
dt > 0 we get φ(z)

(
1
z
− 1

z3

)
< P[Z ≥ z]. Applying the trick again

to
∫∞
z

3φ(t)
t4
dt yields
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∫∞
z
−3φ′(t)
t5

dt =
[
−3φ(t)
t5

]∞
z
−
∫∞
z

15φ(t)
t6

dt

= 3φ(z)
z5
−
∫∞
z

15φ(t)
t6

dt

and since −
∫∞
z

15φ(t)
t6

dt < 0, we get P[Z ≥ z] < φ(z)
(

1
z
− 1

z3
+ 3

z5

)
, which proves the claim.

• (Maxwell’s theorem): Let Z ∈ Rn be a random vector for which (i) projections into
orthogonal subspaces are independent and (ii) the distribution of Z depends only on
the length ‖Z‖. Then Z is normally distributed.

• (Rotation invariance): For standard normal distribution: Zi are independent stan-
dard normal random variables. The joint density of Z1, . . . , Zn is

f (z1, . . . , zn) = (2π)−n/2e−(z21+...+z2n)/2 = (2π)−n/2e−‖z‖
2/2

which is rotationally invariant, i.e. invariant under rotations of n -dimensional space,
because it only depends on the length of the vector z = (z1, . . . , zn), and determinant
of the Jocabian matrix is one.

Stability

• Theorem If X1, X2 are two i. i. d. random variables such that X1 and (X1+ X2) /
√

2
have the same distribution, then X1 is normal.

• Corollary Suppose X1, X2 are i. i. d. random variables with finite second moments
and such that for some scale factor κ and some location parameter α the distribution
of X1 +X2 is the same as the distribution of κ (X1 + α) . Then X1 is normal.
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