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1 Introductionn

When we learned the Lasso this kind of regression problem in high dimension setting, we need to assume the
underlying true parameter is sparse in order to recover the parameter vector, otherwise we may have more
parameter than sample sizes. Now we are aimed to recover the underlying matrix, but how to characterize the
dimension of the parameter in a matrix? The answer is SVD, the number of parameter of a unknown matrix is
equal to the number of parameter in its corresponding SVD, for a n; X ny matrix, the number of parameter is
r(ny + ng — ), in low dimension is OK since our sample size N is enough to estimate these parameter, but in
high dimension, if the underlying matrix is full rank, i.e. rank=min(n;,ns) = r, then the number of parameter
r(n1 +mna —r) > N, we cannot estimate the parameter, so the key assumption in matrix estimation is ”low
rank”, which is analogous to sparsity s < p in vector estimation.

I first teach the general low rank matrix estimation, then goes to the sample matrix completion, i.e Netflix
recommendation problem. Finally, we learn a algorithm to recover the low rank matrix.

2 Low-rank matrix estimation

This section we will talk about the generalization of linear regression, which can be called matrix regression,i.e
the unknown parameter from vector 5* € RP to matrix matrix M* € RP1#P2,
Each observation has the form (A;,y;) =(covariate,response), A; has same dimension with M* and

yi = (Ai, M*) + €, € ~N(0,0%),i=1,2...N

where (A;, M*) = Tr(AT M*), then we define observation operator A : RP12P2 — R such as A(M*) is a vector
with N entries, i.e. [A(M™*)]; = (4;, M™*)
Write down our model:
y=AM*)+€ &~ N(0,0°Iy)
Where M* is underlying true parameter matrix, with rank(M™*) < r.
Our estimator is given by:

- 1 )
M i — |ly — A(M M|«
carg min {5 Iy - AGDI + Al |

The reason why we use nuclear norm to encourage sparsity is analogous to the ¢; in lasso, as the computation
for rank is NP hard, so we choose its convex relaxation, which is nuclear norm as our penalty.
Let’s start our analysis from the basic inequality:

1 ~ 2 9 1 *\ (|2 *
N — < —
sy 19 = AADIz + MM < 5= lly = A3 + A[M]
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LNHA(M — M*)|I3 < 578 A — M))| + A(I M7 || — [[M]].)

=

— | (A5 (@), 5T — M) + A — [3T]].)

2|

Where A*(€) = vazl €A

Lemma 1 (X,Y) < | X[ []Y][op
Proof:
Let SVD: X =VDW | V, W are unitary matriz.

(X,Y) = Tr(YTX) =Tr(Y'VDW) =Tr([(VYW)"D])

ZZ (VYW){Djr = > (VYW)fok(X)

k=1 j=1 k=1

S VY Wllop Z%(X) = [ XY ]lop
k=1

Then define A = M* — M we can get

1 1, . * y
M S lAGIE < FIA@llopllAlle + ACIM . — [ M].)

Lemma 2 Let rank(M*) <r, A = M* — ]\7, then exist A1, Ay € RPYFP2 gych that
1. A=A+ Ay
2. rank(Ay) < 2 rank(M*) < 2r
3. 0=M*TAy = M*AT = (A1, Ay)

Proof: In Appendiz Proof 1

Lemma 3 Let A and B be matrices of the same dimensions. If AB' =0 and A’B = 0 then ||[A+ B||« =
[l + (| B[+
Proof: SVD

B

0 "

A=[ Uy UAQ][EA O][Vm Vas |- BI=[ Un: UBz][ ][Vm e

ABT =0 = VATl Vg, =0,ATB=0= UXI Up, = 0. Hence, there exist matrices Uc and Vo such that
[Ua1Up1Uc| and [Va1Vp1Ve] are orthogonal. Then

XA
A=[Un Up Uc ] 0 [Var Ve Vo ]©

B=[Uun Um Uc ] oy [V Ve Vo ]©

Thus,
A—FBZ[UAl U31]|:2A EB][VAl Vb1 ]T

Hence, ||A + B« = [|All+ + || Bl|«
Remark: If the row and column spaces of A and B are orthogonal, then ||A+ Bl|« = || 4|« + || B]|«
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Lemma 4 Based on Lemma 2 and Lemma 3, and A = M* — M, we have

LM = 171« > 1Azl — Al

since |[M|. = ||M* = Al = [M" = Ay — Ao
2 [|M7* = Al — [|Adlls = [IM7]] + [| Azl — 1A

2. Triangle inequality: ||All. < ||Arll« + [|Az]«
3. [Anll« < V2r[Asllr < V2r||Allr

Continued, we have
1 1. ..
M S lAGIE < FIA@llop(IAll, + 122],) + A1 A, = [[A2],)

1, . Lo
(A 14 @) 18l + (1A @l = 2) el

Theorem 1 (useful later)

o IFAZ HIA @ lops then F A3 < 2VEAI AR
o« A2 2 A @llop, then s IlADIE < EANALL. — SA|A]

Thus we get cone condition: ||Azl. < 3||A1]«

Theorem 2 (kappa) based on theorem 1

Define -
B Tl AB) ]2
K= _ _in T S
A0, &L <31& 0. |Allp
Then k2| A% < L AQ)3 = ||AllF < Y22, thus
~ N 2r\?
|1M — M*||% < o

Next we need to find the high probability bound for 3 [|.A*(€)]|op.

Lemma 5 (net-cover) In previous class, we talk about eg—net-cover for RP; the results follows
Define SP~1 = {v € RP : ||v|| = 1},

Let {uy, ...um, } € SPr=L be an e—net-cover for RP:

Let {v1,...Um, } € SP2~1 be an e—net-cover for RP2

We have shown in the class that we can take ey = i, mp < 9P meo < 9P2

Define %”A*(QHOP = H% ZkN:1 €k Akllop := [|Qllop, and we know [|Q|[op = sup,cgr—1 [[QV]2.

For any v € SP271, according to the definition of net, |Qu|l2 = |Q(v—v; +v;)|l2 < [|Qu;ill2+ Qv —v;) |2
maxi<j<m, [|Qujll2 + €0l Qllop

For any u € SP' 71, (u, Quj) = (u—u;+ui, Quj) = (u—ui, Quj)+(ui, Quj) < €ol|Qujlla+maxi<icm, (ui, Quj) <
col|Qllop + maxi <i<om, (ui, Qu;)

Take €y = %, we have

IN

1
<= ) .
1Qllop < 5 1@llop + max - max {u;, Quj)

Which imply

< ) .
1Qllop <2 max - max (u;, Qu;)




Weihao LI — Final Project 4

Let us assume maxy |(u;, Axv;)| < 1( or O(1)), then we have

P |14 @] <33P (1w @0l > £

=1 j=1

mi Mo 1 N "
SZZ]P)<| Zek ul,AkU] |>2>

i=1 j=1 k=1

<§:§P<N ,0 2)

i=1 j=1

Nt?
< 2exp <—002 + (p1 + p2) log 9)

L. p1+ D2
NIIA (Ollop S 0/ N w.h.p

Theorem 3 Assume maxy, [(u;, Agv;)| < 1( or O(1)), and set A = Coy/BEE2 - according to Theorem 2
we have

Take t=Co p1+p2 , we have

2 _ ro2(p1 +po)

s N w.h.p

HM—M*

But the value of ¥ may be very small, we can assume observation operator A is from Gaussian distribution
in order to remove x, which is analogous to the random design in lasso problem.

~ )

r(p1+p2)
N

Theorem 4 Suppose the entries of Ay, is from iid N(0,1) and assume
we have

@ maxy, [(u;, Agv;)| = O(1) w.h.p

@ Under cone condition: k 2 1 w.h.p

is sufficient small, then

Proof of @: Since (u;, Agvj) ~ N(0,1), then |(u;, Axv;)| < 10 with high probability.

Proof of @:

Recall the definiti s : k= inf a4l _ 4 L A(X te [ A(X)||2 =
ecall the definition of k is : £ = infy x| .20 P = nfjx) =1 ﬁ” (X)||2, rewrite ||A(X)|2 =

sup, csv-1(u, A(X)). Then k = inf| x| =1 sup,cgn-1(u, A(X)).
Define Z, x = (u, A(X)) is Gaussian R.V with zero mean. For any two pairs (u, X), (v, X')

2

U1l <A1,X> u’l <A1,X/>
o — Zur < us (A, X) > < uh (Ag, X'
u, X — 4u X' = . ) . - . ) o

unN <AN,X> UIN <AN,X/>

N
Z uz AZ7X — U <AZ7X>)
i=1

— B(Zux = Zwx/)? = [lu® X — o/ X[}
Neat define Yy, x = (w,u) + (G, X) where entry of w and G are #d N(0,1), so Y, x is Gaussian with
zero mean.

wy uy — uj
Wo ug — U

(Yux —Yu x)? = < : : : > + Tr[GT (X — X')]

wN un — Uy
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= E(Yy,x — Y x/)* = lu— '3 +[|X - X'|%
And we have |lu® X — v/ X'||% < |lu —¢/||3 + || X — X'||% equality hold with X = X’

Lemma 6 (Gordon-Slepian inequality) Let X;; and Y;;( 1 < i < n,1 < j < m) be real-
valued centered Gaussian R.Vs which satisfy follwoing conditions:

1. E(|Y;; — Yikl?) < E(|1X;; — Xik))? foralll<i<n,1<jk<m
2. E(‘Y;’] — le,k|2) Z E(‘XZJ — Xl,k|)2 fO’I‘ all 7 75 l

Then

E( min max Y;;) <E(min max Xj;;)
1<i<n 1<j<m 1<i<n1<j<m

\.

Apply the Lemma 6: Since we have shown E (Z,, x — Zur,xf)2 <E(Yux — YU/,X/)2 the condition 2 holds,
condition 1 holds since we have equality when X = X', so we can get

E( inf sup Z, x)>E( inf sup Y, x)
Xl F=1yesN-1 IX|lF=1ycsN-1

Hence we get following relation:

E inf sup Zy x) > E( inf sup Y,
[ AR =T ant ) S ) S B ) S x)

Lemma 7 Let Zy,Zy, ... Zn & N(0,1), then Y = \/Z% + Z2 + ... Z2 ~ Xn with

L)
L'(3)

E(Y) = V2 > Vi (by M)

Continue our analysis, we compute

E( inf sup Yy x)=E[ sup {(w,u)]+E[ inf (G, X
(HXHF 1ue51£) 1 ) [ues}‘?—1< ) [HXHF:1< )
= E[lwll2] —E[ sup (G,X)]

XNl r=1

1
> ix/ﬁ— E[Gllopll X1«

Proposition 1 Suppose condition of Theorem 4 hold, then

FIA 11 .
11 R S ra— == V=
Ixl=20  |Xlr T2 VN PIX|r

By standard covering lemma, we have E|G|o, < Cy/p1+p2 whp. And inequality |X,||
V/rank(X)|| X ||, replace X by A = M — M*, which satisfy [|Asl. < 3||A1|., rank(Ay) < 2r, we

can get
All.
ATl < 18all + |Aell. < 4180] < V2| Aalle < 4VEFIALR = i < 4VEr
- @)
2
K= inf ‘F7||F> ——4\[ r(p1+p2) w.h.p

A0, Azl <3[1 A1l A N

r(p1+p2)
N

Since we assume that is sufficiently small, we have x 2> 1 w.h.p.

Combine Theorem 3 and Theorem 4, we can get our final Theorem.
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Theorem 5 Assume all elements of observation operator A is from #id N(0,1), and assume T(LA'}'”) 1

sufficiently small, and rank(M*) < r then

o?r(p1 + p2) g

M—M* 2 <
I — by 5 TP

3 Matrix completion

In matrix completion problems, the observation has the form (‘/plpgea(i)ebT(i),yi), which means that A; has
only one non-zero entry with value /prpz. This is parallel to the Gaussian sequence model with X = /pI so
the matrix completion is a special case of low rank matrix estimation. Our model can be written as:

€;
vV P1P2 ’

Where y; is observed noisy entry of true matrix.
Or we may think each entry of M* is picked with probability —( observing” at random), then we have
following relationship:

gi:M:(i)yb(i)Jr €i NN(an'z)vi:LZv"'n

”’“M*”Z]— ZE[AZ,M*} ZHM*HF—HM*HF

But in high dimension setting,i.e. n < pips, in order to successfully recover underlying M*, we need to have
some conditions on M* and observations. Think about the following bad cases:

e Case 1:
0 0 O 1
0 0 O 0
M =e ®e,, = 0 0 0
000 --- 0

If we observe entry with probability ﬁ, then it is highly possible that we only observe zero.

e Case 2: Suppose in the true matrix M*, there are some values in each row and column, but in the
observation, some row or column is unobserved. E.g: no information of second row,

a b ¢ d e
o0 707
J h g f
k m n o
t s r q p

then it is impossible to recover M*, intuitively if we have no data about a specific user, how can we
guess/infer his preference?

Case 2 problem is not our concern if we treat the sampling as uniform and number of sample is sufficient, that
is to say we always observe some values in each row and column.

For case 1 problem, literature pose incoherent assumption on unknown matrix M*, which assume singular
vectors of M* are relatively ”spread out” (if the singular vector is canonical basis e;, then case 1 problem shown).
There are various ways to address the deficiency of the coherence condition, in our analysis, we assume maximum
absolute value of the matrix is bounded, i.e. |M*|maz < \/ﬁ. Our estimator is given by:

—~

1 2
M i — |y — A(M A M|+
cang,, win {5 Iy - AGDIE+ AlM-

NG

Where y; is ith observed noisy entry X./p1p2
Following the same basic inequality, we get the Theorem 1 and Theorem 2. Next we need to find the high
probability bound for {|A*(€) /oy
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Since || A*(&)]lop = |2 A% (E)]lop = || S0, €iAi]lop With €; ~ N(0,02). And notice E(e;A;) = E(e;)E(A;) =
0. If we can show €;A; is zero mean symmetric sub-gaussian, then we can apply Hoeffding bound for random
matrix.

We check the moment generating function:

2202E(A2)
2

§NEEA) | g AE(EAD) Jeen 5 MHED EAD"
prt k! &= (2k)! - (2k)! B

E(e)\ELAI ) —
k=0

n

. O A
But notice that A; # AT so we construct Q; = [ AT OZ ] € R(P1+p2)z(P1+p2) and we have ||% S €iAillop =
i
1% 2y €Qillop:

A202E(Q%)
2

0. 1 .
E(eri%) <e E(QF) = @pmadwg(m,p1....p2,p2~.p2) < max(p1, p2) Ip, +ps

So €;Q; is sub-gaussian with V; = oo max(p1, p2)Ip, +p»

7~

Lemma 8 (Hoeffding bound for random matrix) Let {B;}?; be a sequence of zero-mean indepen-
dent symmetric random matrices that satisfy the sub-gaussian condition with parameter {V;}_,. Then
ford >0

1< g2
P (IIn > Billop > 6) < 2dim(B;)e” 5.2
i=1

where v2 = ||% o Villop

2

Apply Lemma 8 with dim(e;Q;) = p1 + p2,v? = H% S Villop = llo® max(p1, p2) Ip, +ps |lop = 0% max(p1, p2)

=
1o 1O
P <”n ZeiAi”op> =P (”n ZeiQiop>
i=1 i=1

nt?

< 2pr o) exp— g o

Cnt?
2 + log(pl + pQ)

<2exp——
o P (p1 +p2)o

Take #2 = 002(p1+p2)109(101+p2)

p , we get

1, ., a%(p1 + p2)lo +
L, g Torplosnr ) -,

Theorem 6 Assume rank(M*) <r, set A\ =Co w, we have

P 1ot (prtpa)log(prtp)

HM ~ml| < =
F nK

2

Next task is to lower bound the kappa: i.e lower bound %, without loss of generality, define the set

F
o
S(a,p) =4O e ROl =1, ||O|lmax < —— and O+ < }
(@) ={ 101 =1, 1]l < 2= ©]- <

Remark: under cone condition, p = 4v/2r
Let Z(a, p) := SUP@es(a,p)
Define Fo(A) := (0, 4)2, |Fo(A)| < [0]2.] A1} < 25-pips = o2

— P1p2

1 |A(©))3 — 1|, we sim to show Z(a, p) is closed to zero.

Lemma 9 (Functional Hoeffding theorem) Let Z = sup;cz{+ >." f(X;)}, and f is bounded, i.e.
fel-%L], then
né?

P(Z > E(Z) +6) < exp(—77)
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Take § = Cay/ @rtp2)los@itpe) (o have
n )

P <Z(a, p) > E(Z(a, p)) + Oa\/(p1 +p2) 1Zg(p1 +p2)) < exp[=C(p1 + ps) + log(p1 + po)]

Lemma 10 (Rademacher symmetrization)

= o (3 Sy -0

1 with probability 0.5
—1 with probability 0.5

<E | > oz

geg

where €; = {

Then we have

n

E(Z(a,p)) <2E [ sup |— Z€;<Ai’®>2|1 < 2aFE

®cs(a,p) M i @cS(a,p) ™

sup lzn:ei (A;,©) ]

Since |(A;, ©)] < « for all ©® and A;. And E [SUPees(a o | i €{As, G)>|] < PE[||2 37 € Aillop)

i=16 i=1%i

The analysis of upper bound for E[||+ 3" | €/ A;||,p] is similar with what we have done after Lemma 8, i.e.

Elll; X €Aillop) < C w Thus we have

{20, )] < Crapy| L H 2B 1 £ 22

We have derive high probability bound for Z(a, p):

1 1 1

Z(ap) = sup
©cS(a,p) | T

Replace p = 4v/2r and extend to general form, we can get

1 2

SAA r + p2)lo + + lo +

n”” (”2)|2 . 1‘ < ClaH A HF\/ (pl p2) ng(pl p2) + 02a|| A ”F\/(]h pz) ng (p1 p2)
A F

1
SC?)alAHF\/r(pl +p2):g(pl +p2) U).h.p

for all 0 # A € RP1*P2 that satisfy the cone condition.
Based on above inequality, we have

L I
~[AR)Z = AlF - 03a||A||F\/7" (p1 + p2) log (p1 + p2)

n

NP (mnp - Coo [T 22V B +P2>>

n

e Case 1: if |A|p > 203a\/"<m+1’2>13g(?1+?2> then L[| A(A)[3 > L[|A2 = w2 >

— [|A2 < Mz(p1+pzzllog(p1+pz)

1
2

w.h.p By Theorem 6

e Case 2: if ||[A|r < 203a\/r(p1+p2)10g(P1+P2) then ||A]2 < ™ *(p1+p2) log(py+p2) w.h.p

n

Theorem 7 For model §; = My, ;) + \/%, & ~ N (0,02). Assume ||[M*| < \/1;117172 and
rank(M*) < r. then

2 1
S max(aQ,UQ)r(pl +p2) Og(pl +p2)
F n

w.h.p
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4 Computation for matrix completion

Suppose underlying true parameter M* is of good structure and our observation is sufficient to estimate M*.
Then our estimator:

. 1 2
M =arg  min o (429 (Yij — Bij)” + Al Bl
2y

Where 2 is the index of observed entries.
Define Pq, projection operator onto observed set:

[Pa(B)l;;

F(B) = 3 1Pa(Y) = Pa(B)ll7 + Al Bll. = g(B) + h(B)
Two items needed for proximal gradient descent:
o Gradient of g: Vg(B) = — (Pa(Y) — Pa(B))

e Prox function: prox,(B) = argming; || B — Z||% + M| Z||.
z
Claim: prox,(B) = Sx+(B), matrix soft-thresholding.

S\(B) = UX\VT where B =UXVT and (X2);; = max {¥;; — A, 0}

Proof:
if Z=UXVT, then 8||Z|, = {UVT + W : |[W|lop < 1,UTW =0,WV =0}, ,note that prox,(B) = Z,
where Z need to satisfy

0€eZ—-B+Xt-0|Z|«

plugin Z = UX\ VT, r = rank(2)
Z - B+ XI|Z|« =UZx VT —UZVT + XU, VT + W)
=U(Sx — S+ 2)VT + W
T
=0 set W= _U[T+15n]‘/[r+1:n}

So B#D = 8y, (B® + ¢ (Po(Y) — Po(BY)))
Note that Vg(B) is Lipschitz continuous with L = 1, so we can choose fixed step size ¢ = 1. Update step is
now:

B = 5, (PQ(Y) + P5(3<t>))
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5 Appendix

Proof 1 We write the SVD as M* = UDVT, U, V are unitary matric and D
diag(o1,02...,0,,0,0,..0) T = UTAV € RP1xp2

r— INTE T where Ty € R'r'xr7 and Ty € R(pl*T)X(pZ*’I")
a1 T2
Let
0 O T
AQZU V,andAle—Ag
0 T'oo

'y T2 Ty Tio 0 0
= < <
rank (A7) = rank [ Ty 0 ] < rank [ 0 0 } + rank [ Ty 0 ] < 2r

And it is obvious that 0=M*TAy = M*AT = (A1, Ay).
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