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1. Introduction

Classical statistical method rely on large sample asymptotic theory, generally we
assume dimension p is fixed and sample size n goes to infinity under this regime.
However, with the advent of better computational tools, high dimension data be-
come popular in many different areas, the classical method may fails when dimen-
sion p become large. Basically, researcher investigate the high dimension data under
two framework, one is random matrix theory which assume both p, n go to infinity
but the ratio of p and n converge to some positive number, another framework is
to assume true parameters enjoy some low dimensional structures(such as sparsity,
low rank, etc) and derive some convex optimization methods to recover the truth
from samples ([PA14]).

Covariance matrix is important in multivariate statistics and many different statis-
tical applications. Testing for equality of covariance matrix and identity matrix is
especially crucial since many statistical models rely on the independence assump-
tion between covariates. However, classical method such as likelihood ratio test
may fail in high dimensional regime. Many researchers were devoted to developing
different methods to conduct hypothesis testing for special covariance structure.
Testing the bandedness of the covariance matrix of a high-dimensional Gaussian
distribution was investigated in [CJ+11], two samples covariance matrix test with
application in high dimensional genomic studies was proposed in [LC12]. Above
listed two method can be applied to large p small n scenario but they are not
remedies to classical method, which means that they made different assumptions
compared with classical method.

In this project, we focus on a remedy for classical likelihood ratio test by random
matrix theory([BJY+09]), in which new limiting distribution of same test statistic
is derived. The organization of this paper is following: first I will introduce the
problem setting for testing the equality of covariance matrix and then introduce
likelihood ratio test and do a simulation to show the result become very bad when
dimension p increase. Second, I will talk about how to derive an alternative test
using random matrix theory and do a simulation to show the result is always good
as dimension p goes up. Code is attached in the appendix.

2. Classical Likelihood ratio test

We focus on the problem of one-sample covariance hypothesis test. Suppose we
have X1, · · · , Xn follow from p-dimension(p < n) normal distribution N(µp,Σp),
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we want to test H0 : Σp = Ip based on sample covariance matrix S:

Sn =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T

The sample covariance S is maximum likelihood estimator of Σp, which is consistent
estimator for Σp as n→∞, p is fixed. But in order to do inference and hypothesis
testing, consistency is not enough, we need to derive some asymptotic distribution.
Likelihhod ratio asymptotic provide a limiting Chi-square distribution, first we
need to compute the maximum likelihood under null space and unconstrained space
respectively.

Null: LN =

n∏
i=1

[
(2π)−p/2 exp(−1

2
(Xi − X̄)T (Xi − X̄))

]

Unconstrained: LU =

n∏
i=1

[
(2π)−p/2|S| 12 exp(−1

2
(Xi − X̄)TS−1

n (Xi − X̄))

]
Using relation Tr

[
(Xi − X̄)TS−1

n (Xi − X̄))
]

= Tr
[
S−1
n (Xi − X̄)(Xi − X̄)T )

]
, the

likelihood ratio test statistic is give by:

(2.1) Tn = −2 log(
LN
LU

) = n (Tr(Sn)− log |Sn| − p)

From large sample asymptotic theory, we know that as n goes to infinity with p
fixed, Tn will converge to χ2

p(p+1)/2 under H0. Hence we can derive a hypothesis

test with size α as following:

(1) Compute Sn, Tn based on X1, · · · , Xn.
(2) Compute 1− α quantile of χ2

p(p+1)/2, denoted as Cα
(3) If Tn > Cα, reject H0, otherwise accept.

The simulation was conducted with n = 500 and different p. For each (n, p) 1000 in-
dependent experiments were done and in each experiment I simulated X1, · · · , Xn ∼
N(0, Ip). Simulation result follows

Table 1. Simulation: χ2-test based on Likelihood ratio,α = 0.05

(p.n) (10,500) (50,500) (100,500) (200,500)
proportion of rejection 0.042 0.255 0.982 1.000

Theoretically, we are expected to make 5% mistakes(rejections), but from above
table we can see the performance of LR test become worse as p become larger.
This phenomenon suggests that the large sample asymptotic theory may not be
appropriate when p is large or p and n are roughly same order.

3. Remedy by random matrix theory

Given celebrated Marčenko-Pastur law of normalized Wishart matrix ([MP67]), the
behavior of large dimension covariance matrix is expected to be better understand.
Let Zi = Xi − µp ∼ N(0, Ip), S̃n = 1

n

∑
ZiZ

T
i , the empirical spectral distribution

of S̃n denote as Fn. As p, n → ∞, pn → y ∈ (0, 1), Fn will converge to Marčenko-
Pastur law F y. Our focus is to derive a new hypothesis test, parallel to classical
hypothesis testing, we are going to find some limiting distribution under H0, and
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then use specific quantile of limiting distribution and test statistic to conduct the
hypothesis test.
Since the limiting distribution is based on S̃n, we first argue that Sn and S̃n are
equivalent asymptotically.

Sn = S̃n +
1

n

n∑
i=1

(Xi − µp)(µp − X̄)T +
1

n

n∑
i=1

(µp − X̄)(Xi − µp)T

+ (µp − X̄)(µp − X̄)T

Last three terms will vanish as n → ∞, so Sn and S̃n have same limiting spectral
distribution. It suffices to focus on S̃n.
Recall the format of Tn and define L̃∗ := Tr(S̃n) − log(|S̃n|) − p, it can be shown

that L̃∗ can be written as functional of empirical spectral distribution. Parallel
to classical central limit theorem which produce the asymptotic distribution of
1
n

∑n
i=1 g(Xi), in random matrix theory it is also possible to derive some asymptotic

Gaussian distribution for functional of empirical spectral distribution. It was shown
that L̃∗ converge to Gaussian distribution in [BS04], I will discuss derivation of
asymptotic mean and variance in subsequent section.

L̃∗ = Tr(S̃n)− log(|S̃n|)− p

=

p∑
i=1

(
λ
S̃n)
i − log λ

S̃n)
i − 1

)
= p ·

∫
(x− log x− 1)dFn(x)

= p ·
∫
g(x)d (Fn(x)− F yn(x)) + p · F yn(g)

where g(x) = x− log(x)− 1. First term is an empirical process denoted as Gn(g),
second term is an deterministic term which we will compute later. Here we take
following theorem in [BS04] as granted and only find mean and variance.

Theorem 3.1. Assume that f1, . . . , fk ∈ A, and {ξij} are i.i.d. random vari-

ables, such that Eξ11 = 0, E |ξ11|2 = 1, E |ξ11|4 < ∞. Moreover, p
n → y ∈ (0, 1)

as n, p → ∞. Assume {ξij} are real and E
(
ξ4
11

)
= 3. Then the random vector

(Gn (f1) , . . . , Gn (fk)) weakly converges to a k-dimensional Gaussian vector with
mean vector:
(3.1)

m (fj) =
fj(a(y)) + fj(b(y))

4
− 1

2π

∫ b(y)

a(y)

fj(x)√
4y − (x− 1− y)2

dx, j = 1, . . . , k

and covariance function

(3.2) v (fj , f`) = − 1

2π2

∮ ∮
fj (z1) f` (z2)

(m (z1)−m (z2))
2 dm (z1) dm (z2) j, ` ∈ {1, . . . , k}

where m(z) ≡ mF y(z) is the Stieltjes Transform of F y ≡ (1− y)I[0,∞) + yF y. The
contours in (3.2) are nonoverlapping and both contain the support of F y.

By Theorem 3.1 Gn(g) weakly converges to a Gaussian random variable with the
mean

(3.3) m(g) =
g(a(y)) + g(b(y))

4
− 1

2π

∫ b(y)

a(y)

g(x)√
4y − (x− 1− y)2

dx
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Where a(y) = (1 −√y)2, b(y) = (1 +
√
y)2. Using change of variable x = 1 + y −

2
√
y cos θ, 0 ≤ θ ≤ π, dx = 2

√
y sin(θ)dθ we have

m(g) =
y − log(1− y)

2
− 1

2π

∫ π

0

y − 2
√
y cos(θ)− log(1 + y − 2

√
y cos(θ))√

4y sin2(θ)
2
√
y sin(θ)dθ

=
y − log(1− y)

2
− 1

2π

∫ π

0

y − 2
√
y cos(θ)− log(1 + y − 2

√
y cos(θ))dθ

=
− log(1− y)

2
− 1

2π

1

2

∫ 2π

0

− log(1 + y − 2
√
y cos(θ))dθ

=
− log(1− y)

2
+

1

4π

∫ 2π

0

log(1 + y sin2(θ) + y cos2(θ)− 2
√
y cos(θ))dθ

=
− log(1− y)

2
+

1

4π

∫ 2π

0

log[(1−√y cos(θ))2 + y sin2(θ)]dθ

=
− log(1− y)

2
+

1

4π

∫ 2π

0

log |1−√yeiθ|2dθ

We need to compute 1
2π

∫ 2π

0
log |1−√yeiθ|2dθ, the format of this integral remind us

to use Gauss mean value theorem in complex integral. Gauss’s mean-value theorem
says that if a function u is analytic on and inside a circle of radius r centered at a
point z0, then

(3.4) u (z0) =
1

2π

∫ 2π

0

u
(
z0 + reiθ

)
dθ

If we take u(z) = log |1−√yz|2, z0 = 0, r = 1, we can get that

(3.5) 0 = log |1| = 1

2π

∫ 2π

0

log |1−√yeiθ|2dθ

Hence it suffices to check function u(z) = log |1 − √yz|2 is analytic on the unit

circle in C. Since
√
y < 1, the singularity point of derivative u(k)(z), k ∈ N all lie

outside the unit circle, we can approximate the u(z) with Taylor series centered
at any point inside the complex unit circle. That is to say, our function u(z) is
analytic on the complex unit circle. In original paper [BS04], instead of mean value
theorem they apply Poisson’s integral formula, which is given by

(3.6) u(z) =
1

2π

∫ 2π

0

u
(
eiθ
) 1− r2

1 + r2 − 2r cos(θ − φ)
dθ

where u is harmonic on the unit disk in C , and z = reiφ with r ∈ [0, 1). Take
u(z) = log |1 − √yz|2 and r = 0, we get (3.5) again. Let z = a + ib it suffices to
check u(a, b) is a harmonic function. We can check this function u satisfies Laplace’s
equation. Let u(a, b) = log |1 −√ya −√ybi|2 = log[(1 −√ya)2 + yb2]. It reduces

to check ∂2u
∂a2 + ∂2u

∂b2 = 0.
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∂u

∂a
=
−2
√
y(1−√ya)

(1−√ya)2 + yb2
,
∂u

∂b
=

2yb

(1−√ya)2 + yb2

∂y2

∂a2
=

2y2b2 − 2y(1−√ya)2

(1−√ya)2 + yb2
,
∂y2

∂b2
=

2y(1−√ya)2 − 2y2b2

(1−√ya)2 + yb2

=⇒ ∂2u

∂a2
+
∂2u

∂b2
= 0

The integral 1
2π

∫ 2π

0
log |1−√yeiθ|2dθ vanish. We conclude that m(g) = − log(1−y)

2 .
The approach by Poisson’s integral formula is an alternative way to compute the
mean m(g), later I will use it to find another integral, for that integral I only know
how to use Poisson’s integral formula to solve the problem.
Next we are going to find the variance v(g, g) for g(x) = x− log(x)− 1.

(3.7) v(g, g) = − 1

2π2

∮ ∮
g (z1) g (z2)

(m (z1)−m (z2))
2 dm (z1) dm (z2)

By proposition 3.6 in [YZB15], we can rewrite the variance v(g, g) as following:

(3.8)

1

2
v(g, g) = lim

r↓1
− 1

4π2

∮
|ξ1|=1

∮
|ξ2|=1

g
(∣∣1 +

√
yξ1
∣∣2) g (∣∣1 +

√
yξ2
∣∣2)

{ξ1 − rξ2}2
dξ1dξ2

:= lim
r↓1

J(g, g, r)

Expand the numerator we can get many pieces of integrals, which will be slightly
easier to compute them one by one:

g (z1) g (z2) =z1z2 − z1 log z2 − z2 log z1 + log z1 log z2

− z1 + log z1 − z2 + log z2 + 1

Set f1(x) = x, f2(x) = log(x), f3(x) = 1, we can further decompose J(g, g, r) as

J(g, g, r) = J(f1, f1, r)− 2J(f1, f2, r) + J(f2, f2, r)

− 2J(f1, f3, r) + 2J(f2, f3, r) + J(f3, f3, r)

Detailed but lengthy argument in section 3.2.1 of [YZB15] show that

(3.9)
J(f1, f1, r) =

y

r2
, J(f1, f2, r) =

y

r2
, J(f2, f2, r) = −1

r
log(1− y

r
)

J(f1, f3, r) = J(f2, f3, r) = J(f3, f3, r) = 0

Combine with (3.8) we know that

1

2
v(g, g) = lim

r↓1
− y

r2
− 1

r
log(1− y

r
) = −y − log(1− y)

=⇒ v(g, g) = −2y − 2 log(1− y)

Based on Theorem (3.1) and the computation of m(g), v(g, g), we arrive at following
theorem:

Theorem 3.2. Given m(g) = − log(1−y)
2 , v(g, g) = −2 log(1− y)− 2y

(3.10) Gn(g) = L̃∗ − p · F yn(g)⇒ N(m(g), v(g, g))
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To construct the hypothesis test, it remains to find the value of F yn(g).

F yn(g) =

∫ b(yn)

a(yn)

x− log x− 1

2πxyn

√
(b (yn)− x) (x− a (yn))dx

Let x = 1 + y − 2
√
y cos θ, 0 ≤ θ ≤ π, dx = 2

√
y sin(θ)dθ

=
1

2πyn

∫ π

0

[
1−

ln
(
1 + yn − 2

√
yn cos θ

)
+ 1

1 + yn − 2
√
yn cos θ

]
4yn sin2 θdθ

=
1

2π

∫ 2π

0

[
2 sin2 θ − 2 sin2 θ

1 + yn − 2
√
yn cos θ

(
ln
∣∣1−√yneiθ∣∣2 − 1

)]
dθ

= − 1

2π

∫ 2π

0

[
2 sin2 θ

1 + yn − 2
√
yn cos θ

(
ln
∣∣1−√yneiθ∣∣2)] dθ

This time the final integral become hard, from Poisson’s integral formula(3.6) we

realize yn = r2, φ = 0, u(eiθ) should be equal to 2 sin2 θ ln
∣∣1−√yneiθ∣∣2. However,

what should be the general form of harmonic function u(z)?
A slight complicated function f(z) defined in [BS04] as following:

(3.11) f(z) ≡ −
(
z − z−1

)2
(log(1−√ynz) +

√
ynz)−

√
yn
(
z − z3

)
The reason why they construct this function is because analytic functions have
harmonic pieces(We can assume f(z) is an analytic function,explain later ), the
real part and imaginary part are both harmonic function. Furthermore, the real
part of f(eiθ) is given by (Here we recall log(z) = ln |z|+ i(Arg(z) + 2kπ))

(3.12) <f
(
eiθ
)

= 2 sin2 θ ln
∣∣1−√yneiθ∣∣2

Which is exactly what we want. Plug in <f(eiθ) to Poisson’s integral formula with
r =
√
yn, φ = 0, z = reiφ =

√
yn, we can get:

<f(
√
yn) =

1

2π

∫ 2π

0

[
1−√yn

1 + yn − 2
√
yn cos θ

2 sin2 θ
(

ln
∣∣1−√yneiθ∣∣2)] dθ

=⇒ F yn(g) = −
<f(
√
yn)

1−√yn
= 1− yn − 1

yn
log (1− yn)

Now let’s briefly explain why f(z) is an analytic function. As we can see f(z)
is a combination of some fundamental functions such as z, z3, which is analytic.
But we also notice that non analytic function(on unit disk) 1

z , log(z) is also in
our expression. Intuitively, f(z) can not be analytic because it contains some
non analytic function, however if we apply Taylor expansion log(1 − z) + z =

− z
2

2 +O
(
z3
)
, we will notice that some cancellation happens between (z− 1

z )2 and
log(1− z) + z which force the whole term together be infinitely differentiable, thus
analytic on complex unit disk.
Besides above explanation, I also check <f(z) is actually a harmonic function by
verifying <f(z) satisfies Laplace’s equation, i.e

z = x+ iy, f(z) ≡ f(x, y) = f1(x, y) + if2(x, y),
∂2f1

∂x2
+
∂2f1

∂y2
= 0

However, the computation is too lengthy I do not show it here. Up to now, we
arrive following Theorem:
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Theorem 3.3. Assume p
n → y ∈ (0, 1), under null hypothesis H0 : Σp = Ip

L̃∗ − p
(

1− yn − 1

yn
log (1− yn)

)
⇒ N

(
− log(1− y)

2
,−2 log(1− y)− 2y

)
In simulation and real data, we just assume yn = y in order to use Theorem 3.3.
The testing procedure for H0 : Σp = Ip follows:

(1) Compute L∗ = Tr(Sn)− log |Sn|−p,mn = log(1−yn)
2 , vn = −2 log(1−yn)−

2yn and define

T := v−1/2
n

[
L∗ −mn − p

(
1− yn − 1

yn
log (1− yn)

)]
(2) Compute critical value Cα = −zα/2, where zα/2 is α/2 quantile of standard

Gaussian distribution.
(3) If T > Cα, reject H0, otherwise accept.

Table 2. Simulation: Correction based on Random matrix
theory,α = 0.05

(p.n) (10,500) (50,500) (100,500) (200,500)
proportion of rejection 0.061 0.043 0.067 0.063

After we modify the asymptotic distribution of likelihood ratio statistic via random
matrix theory, the simulation result behave well as we expected, we make around 5%
mistakes no matter how large the dimension p is. Also we can see the distribution
of L∗ is closed to standard Gaussian(red curve).
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4. Conclusion and Discussion

Compared to classical asymptotic Chi-square distribution, the modification via ran-
dom matrix theory to a limiting Gaussian distribution seems to be more reasonable
in high dimensional case.
The limiting ratio between p and n converge to y ∈ (0, 1) in this project. The
critical case y = 1 was investigated in [JJY12] through Selberg integral. Another
interesting topic covered in [ZBY+15] is called substitution for unbiased sample
covariance estimator. The sample covariance matrix Sn defined in this project is
not an unibased estimator, the unbiased sample covariance matrix is defined to be

S̄n =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)T

It seems that there is no difference between n−1 and n, but as we will multiply p to
get the limiting distribution, and p, n are same order, which will make a difference.
We can see from below argument:
Define µSn(g) :=

∫
g(x)dFSn

n (x), we have shown

(4.1) p {µSn(g)− F yn(g)} D−→ N (m(g), v(g))

Also we have following decomposition:

µS̄n
(g)− F yn(g) = (µSn(g)− F yn(g)) +

(
µSn(g)− µS̄n

(g)
)

Since Sn = (1− 1
n )S̄n:

p ·
(
µSn(g)− µS̄n

(g)
)

=

p∑
i=1

{
g

(
(1− 1

n
)λi

)
− g (λi)

}
→ −yF y (λg′(λ))

Hence there is an non-varnishing term yF y (λg′(λ)) show up in the asymptotic
mean. We need to be careful when we do analysis and code programming.
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5. Appendix

Listing 1. Simulation code
# package : compute the t r a c e o f matrix

l i b r a r y ( psych )

LR test<−f unc t i on (n , p , r ep l i ca t ion number , a l p h a s i z e ){
t e s t r e s u l t <−rep (0 , r ep l i ca t i on number )

degree f reedom=p∗(p+1)/2

f o r ( i in 1 : r ep l i ca t i on number ){
D xT=matrix ( rnorm (n∗p ) , nc=p)

cov S=cov (D xT)∗ ( n−1)/n

l o g d e t=determinant ( cov S , logar i thm = TRUE) $modulus

l o g d e t=as . numeric ( l o g d e t )

T n=n∗ t r ( cov S)−n∗ l og de t −n∗p

i f (T n>qch i sq ( a l p h a s i z e , degree f reedom ) )

t e s t r e s u l t [ i ]=1

}
re turn (mean( t e s t r e s u l t ) )

}

RMT test<−f unc t i on ( p over n , n , r ep l i ca t ion number , a l p h a s i z e ){
p=n∗ p over n

t e s t r e s u l t <−rep (0 , r ep l i ca t i on number )

f o r ( i in 1 : r ep l i ca t i on number ){
D xT=matrix ( rnorm (n∗p ) , nc=p)

cov S=cov (D xT)∗ ( n−1)/n
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l o g d e t=determinant ( cov S , logar i thm = TRUE) $modulus

l o g d e t=as . numeric ( l o g d e t )

L t i l d e s t a r=t r ( cov S)− l og de t −p

mean g=−l og (1−p over n )/2

v g=−2∗ l og (1−p over n )−2∗ p over n

temp=(p over n −1)/ p over n ∗ l og (1−p over n )

t e s t s t a t =( L t i l d e s t a r −p∗(1−temp)−mean g )/ s q r t ( v g )

i f ( abs ( t e s t s t a t /qnorm(1−(1− a l p h a s i z e )/2))>1)

t e s t r e s u l t [ i ]=1

}
re turn (mean( t e s t r e s u l t ) )

}

s e t . seed (1 )

LR test (500 ,10 , 1000 , 0 . 95 )

LR test (500 ,50 , 1000 , 0 . 95 )

LR test (500 ,100 ,1000 ,0 . 95 )

RMT test (1/50 ,500 ,1000 ,0 . 95 )

RMT test (1/10 ,500 ,1000 ,0 . 95 )

RMT test (1/5 ,500 ,1000 ,0 . 95 )

RMT test L star<−f unc t i on ( p over n , n , r ep l i ca t ion number , a l p h a s i z e ){
p=n∗ p over n

t e s t r e s u l t <−rep (0 , r ep l i ca t i on number )

t e s t s t a t L s t a r <−NULL

f o r ( i in 1 : r ep l i ca t i on number ){
D xT=matrix ( rnorm (n∗p ) , nc=p)

cov S=cov (D xT)∗ ( n−1)/n

l o g d e t=determinant ( cov S , logar i thm = TRUE) $modulus

l o g d e t=as . numeric ( l o g d e t )

L t i l d e s t a r=t r ( cov S)− l og de t −p

mean g=−l og (1−p over n )/2

v g=−2∗ l og (1−p over n )−2∗ p over n

temp=(p over n −1)/ p over n ∗ l og (1−p over n )

t e s t s t a t =( L t i l d e s t a r −p∗(1−temp)−mean g )/ s q r t ( v g )

t e s t s t a t L s t a r <−c ( t e s t s t a t L s t a r , t e s t s t a t )

}
re turn ( t e s t s t a t L s t a r )

}
s e t . seed (1 )

x=seq ( −5 ,5 , l ength . out = 2 0 0 ) ; y=dnorm( x )

par ( mfrow=c ( 2 , 2 ) )

h i s t ( RMT test L star (1/50 ,500 ,1000 ,0 . 95 ) , f r e q=FALSE, main = ”p=10,n=500”)

l i n e s (x , y , c o l =2)

h i s t ( RMT test L star (1/10 ,500 ,1000 ,0 . 95 ) , f r e q=FALSE, main = ”p=50,n=500”)

l i n e s (x , y , c o l =2)
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h i s t ( RMT test L star (1/5 , 500 , 1000 , 0 . 95 ) , f r e q=FALSE, main = ”p=100 ,n=500”)

l i n e s (x , y , c o l =2)

h i s t ( RMT test L star (2/5 , 500 , 1000 , 0 . 95 ) , f r e q=FALSE, main = ”p=200 ,n=500”)

l i n e s (x , y , c o l =2)


