Review of Conformal+methodology

by Weihao LI

Feb 11th 2023

by Weihao LI

Review of Conformal+methodology

Feb 11th 2023 1 / 40

Review of Conformal+methodology

• Consider i.i.d. regression data

$$Z_1,\ldots,Z_n\sim P,$$

where each $Z_i = (X_i, Y_i)$ is a random variable in $\mathbb{R}^d \times \mathbb{R}$, comprised of a response variable Y_i and a *d*-dimensional vector of features (or predictors, or covariates) $X_i = (X_i(1), \ldots, X_i(d))$.

• Consider i.i.d. regression data

$$Z_1,\ldots,Z_n\sim P,$$

where each $Z_i = (X_i, Y_i)$ is a random variable in $\mathbb{R}^d \times \mathbb{R}$, comprised of a response variable Y_i and a *d*-dimensional vector of features (or predictors, or covariates) $X_i = (X_i(1), \ldots, X_i(d))$.

• Constructing a prediction band $C \subseteq \mathbb{R}^d \times \mathbb{R}$ based on Z_1, \ldots, Z_n with the property that

$$\mathbb{P}\left(Y_{n+1} \in C\left(X_{n+1}\right)\right) \ge 1 - \alpha \tag{1}$$

make CI without assumption

Exercise:

Suppose we have positive i.i.d random variables R_1, \dots, R_n, R_{n+1} . Let $Q_{1-\alpha}$ denote the empirical $1 - \alpha$ quantile for $\{R_1, \dots, R_n\}$, what is approximate value of $\mathbf{P}(R_{n+1} \in [0, Q_{1-\alpha}])$?

Exercise:

Suppose we have positive i.i.d random variables R_1, \dots, R_n, R_{n+1} . Let $Q_{1-\alpha}$ denote the empirical $1 - \alpha$ quantile for $\{R_1, \dots, R_n\}$, what is approximate value of $\mathbf{P}(R_{n+1} \in [0, Q_{1-\alpha}])$? Answer: Consider ordered statisitics for n + 1 R_i

$$R_{(1)}, R_{(2)}, R_{(3)}, \cdots, R_{(n)}, R_{(n+1)}$$

 $\boldsymbol{P}(R_{n+1} \in [0, Q_{1-\alpha}]) \approx \boldsymbol{P}(R_{n+1} \text{ rank lower than } (1-\alpha)(n+1)) \approx 1-\alpha$ (2)

Exercise:

Suppose we have positive i.i.d random variables R_1, \dots, R_n, R_{n+1} . Let $Q_{1-\alpha}$ denote the empirical $1 - \alpha$ quantile for $\{R_1, \dots, R_n\}$, what is approximate value of $\mathbf{P}(R_{n+1} \in [0, Q_{1-\alpha}])$? Answer: Consider ordered statisitics for n + 1 R_i

$$R_{(1)}, R_{(2)}, R_{(3)}, \cdots, R_{(n)}, R_{(n+1)}$$

 $\boldsymbol{P}(R_{n+1} \in [0, Q_{1-\alpha}]) \approx \boldsymbol{P}(R_{n+1} \text{ rank lower than } (1-\alpha)(n+1)) \approx 1-\alpha$ (2)

Remark: relax i.i.d to exchangeable.

Construction of full conformal prediction set

For each value y ∈ ℝ, we construct an augmented regression estimator μ̂_y, which is trained on the augmented data set Z₁,..., Z_n, (X_{n+1}, y). Now we define

$$R_{y,i}=\left|Y_{i}-\widehat{\mu}_{y}\left(X_{i}
ight)
ight|,i=1,\ldots,n \hspace{1em} ext{and} \hspace{1em} R_{y,n+1}=\left|y-\widehat{\mu}_{y}\left(X_{n+1}
ight)
ight|,$$

Construction of full conformal prediction set

 For each value y ∈ ℝ, we construct an augmented regression estimator μ̂_y, which is trained on the augmented data set Z₁,..., Z_n, (X_{n+1}, y). Now we define

$$R_{y,i}=\left|Y_{i}-\widehat{\mu}_{y}\left(X_{i}
ight)
ight|,i=1,\ldots,n$$
 and $R_{y,n+1}=\left|y-\widehat{\mu}_{y}\left(X_{n+1}
ight)
ight|,$

• Hypothesis test: $H_0: Y_{n+1} = y$, define 1–"p-value"

$$\pi(y) = \frac{1}{n+1} \sum_{i=1}^{n+1} \mathbf{1} \{ R_{y,i} \le R_{y,n+1} \}$$
(3)

Construction of full conformal prediction set

 For each value y ∈ ℝ, we construct an augmented regression estimator μ̂_y, which is trained on the augmented data set Z₁,..., Z_n, (X_{n+1}, y). Now we define

$$R_{y,i}=\left|Y_{i}-\widehat{\mu}_{y}\left(X_{i}
ight)
ight|,i=1,\ldots,n ext{ and } R_{y,n+1}=\left|y-\widehat{\mu}_{y}\left(X_{n+1}
ight)
ight|,$$

• Hypothesis test: $H_0: Y_{n+1} = y$, define 1-"p-value"

$$\pi(y) = \frac{1}{n+1} \sum_{i=1}^{n+1} \mathbf{1} \{ R_{y,i} \le R_{y,n+1} \}$$
(3)

we have $\mathbb{P}(\pi(Y_{n+1}) \leq 1 - \alpha) \geq 1 - \alpha$

$$C_{\text{conf}}(X_{n+1}) = \{ y \in \mathbb{R} : \pi(y) \le 1 - \alpha \}.$$
(4)

Remark on full conformal prediction set

• If (X_i, Y_i) , i = 1, ..., n are i.i.d., then for an new i.i.d. pair (X_{n+1}, Y_{n+1}) ,

$$\mathbb{P}(Y_{n+1} \in C_{\text{conf}}(X_{n+1})) \ge 1 - \alpha,$$
$$\mathbb{P}(Y_{n+1} \in C_{\text{conf}}(X_{n+1})) \le 1 - \alpha + \frac{1}{n+1}$$

Remark on full conformal prediction set

• If (X_i, Y_i) , i = 1, ..., n are i.i.d., then for an new i.i.d. pair (X_{n+1}, Y_{n+1}) ,

$$\mathbb{P}(Y_{n+1} \in C_{\text{conf}}(X_{n+1})) \ge 1 - \alpha,$$
$$\mathbb{P}(Y_{n+1} \in C_{\text{conf}}(X_{n+1})) \le 1 - \alpha + \frac{1}{n+1}$$

Computationally intensive: For any X_{n+1} and y, in order to tell if y is to be included in C_{conf} (X_{n+1}), we retrain the model on the augmented data set (which includes the new point (X_{n+1}, y)) ⇒ split conformal prediction set

Algorithm Split Conformal PredictionInput: Data (X_i, Y_i) , i = 1, ..., n, miscoverage level $\alpha \in (0, 1)$,
regression algorithm \mathcal{A} Output: Prediction band, over $x \in \mathbb{R}^d$ Randomly split $\{1, ..., n\}$ into two equal-sized subsets $\mathcal{I}_1, \mathcal{I}_2$
 $\hat{\mu} = \mathcal{A}(\{(X_i, Y_i) : i \in \mathcal{I}_1\})$ $R_i = |Y_i - \hat{\mu}(X_i)|, i \in \mathcal{I}_2$
 $d = \text{the } k \text{ th smallest value in } \{R_i : i \in \mathcal{I}_2\}, \text{ where } k = (n/2 + 1)(1 - \alpha)$ Return $C_{\text{split}}(x) = [\hat{\mu}(x) - d, \hat{\mu}(x) + d], \text{ for all } x \in \mathbb{R}^d$

• If (X_i, Y_i) , i = 1, ..., n are i.i.d., then for an new i.i.d. draw (X_{n+1}, Y_{n+1}) ,

$$\mathbb{P}(Y_{n+1} \in C_{\text{split}}(X_{n+1})) \ge 1 - \alpha$$
$$\mathbb{P}(Y_{n+1} \in C_{\text{split}}(X_{n+1})) \le 1 - \alpha + \frac{2}{n+2}$$

Problem of conformal prediction band

• For split conformal, the width is exactly constant over *x*. For full conformal, the width can vary slightly as *x* varies Solution:

$${R_i} = rac{{\left| {{Y_i} - \widehat \mu \left({{X_i}}
ight)}
ight|}}{{\widehat
ho \left({{X_i}}
ight)}},i \in {\mathcal{I}_2}$$

where the conditional mean $\hat{\mu}$ and $\hat{\rho}(x)$ denotes an estimate of the conditional conditional mean absolute deviation (MAD) of $(Y - \mu(X)) \mid X = x$, are fit on the samples in \mathcal{I}_1

Problem of conformal prediction band

• For split conformal, the width is exactly constant over x. For full conformal, the width can vary slightly as x varies Solution:

$$R_{i} = \frac{|Y_{i} - \widehat{\mu}(X_{i})|}{\widehat{\rho}(X_{i})}, i \in \mathcal{I}_{2}$$

where the conditional mean $\hat{\mu}$ and $\hat{\rho}(x)$ denotes an estimate of the conditional conditional mean absolute deviation (MAD) of $(Y - \mu(X)) \mid X = x$, are fit on the samples in \mathcal{I}_1

 Marginal coverage: ℙ(Y_{n+1} ∈ C_{conf} (X_{n+1})) ≥ 1 − α Much stronger property

$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}(x) \mid X_{n+1} = x\right) \ge 1 - \alpha \text{ for all } x \in \mathbb{R}^d \tag{5}$$

Statistical accuracy

 Base estimator is accurate ⇒ the conformal prediction band is near-optimal;

Base estimator is bad, then we still have valid marginal coverage.

• Assumption A0: i.i.d. data (X_i, Y_i) with mean function $\mu(x) = \mathbb{E}(Y \mid X = x), x \in \mathbb{R}^d$.

Assumption A1: (Independent and symmetric noise) $\epsilon = Y - \mu(X)$

Statistical accuracy

 Base estimator is accurate ⇒ the conformal prediction band is near-optimal;

Base estimator is bad, then we still have valid marginal coverage.

• Assumption A0: i.i.d. data (X_i, Y_i) with mean function $\mu(x) = \mathbb{E}(Y \mid X = x), x \in \mathbb{R}^d$.

Assumption A1: (Independent and symmetric noise) $\epsilon = Y - \mu(X)$ • Two oracle bands:

Super oracle band:

$$C^*_s(x) = [\mu(x) - q_\alpha, \mu(x) + q_\alpha]$$

where q_{α} is the α upper quantile of $\mathcal{L}(|\epsilon|)$.

(i) valid conditional coverage (ii) shortest length for both conditional/marginal coverage

Q Regular oracle band:

$$C_o^*(x) = [\widehat{\mu}_n(x) - q_{n,\alpha}, \widehat{\mu}_n(x) + q_{n,\alpha}]$$

where $q_{n,\alpha}$ is the α upper quantile of $\mathcal{L}(|Y - \hat{\mu}_n(X)|)$. Only offers marginal coverage.

by Weihao LI

Property: Split conformal prediction bands

• Compare two oracle: estimation error is $\Delta_n(x) = \widehat{\mu}_n(x) - \mu(x)$

$$|q_{n,lpha}-q_{lpha}|\lesssim \mathbb{E}\Delta_n^2(X)$$

• Assumption A2: (Sampling stability). For large enough n,

$$\mathbb{P}\left(\left\|\widehat{\mu}_{n}-\widetilde{\mu}\right\|_{\infty}\geq\eta_{n}\right)\leq\rho_{n},$$

for some sequences satisfying $\eta_n = o(1)$, $\rho_n = o(1)$ as $n \to \infty$, and some function $\tilde{\mu}$.

• Theorem(Split conformal approximation of regular oracle): under A0,A1,A2, and the density of $|Y - \tilde{\mu}(X)|$, is lower bounded away from zero $\nu_{n, \text{ split}}$ denote the split conformal interval's width

$$u_{n,\mathrm{split}} - 2q_{n,\alpha} = O_{\mathbb{P}}\left(\rho_n + \eta_n + n^{-1/2}\right)$$

Super Oracle Approximation Under Consistency Assumptions

• Weaker condition than $\mathbb{E}\Delta_n^2(X) = o(1)$ Assumption A4:(Consistency of base estimator). For *n* large enough,

$$\mathbb{P}\left(\mathbb{E}_{X}\left[\left(\widehat{\mu}_{n}(X)-\mu(X)\right)^{2}\mid\widehat{\mu}_{n}\right]\geq\eta_{n}\right)\leq\rho_{n},$$

for some sequences satisfying $\eta_n=o(1),
ho_n=o(1)$ as $n
ightarrow\infty$

• Theorem (Split conformal approximation of super oracle): under A0, A1, A4 and $|Y - \mu(X)|$ has density bounded away from zero

$$L(C_{n, \text{ split }}(X)\Delta C^*_s(X)) = o_{\mathbb{P}}(1)$$

where L(A) denotes the Lebesgue measure of a set A, and $A \triangle B$ the symmetric difference between sets A, B. Thus, $C_{n, \text{ split}}$ has asymptotic conditional coverage at the level $1 - \alpha$.

- Assumption A1 require homoscedastic noise.
- Without modeling assumption, it is known to be impossible to construct non-trival prediction intervals with guaranteed conditional coverage.

Theory of CQR

Conformity score: $E_i^{\text{CQR}} = \max \left\{ \hat{q}_{\alpha/2}(X_i) - Y_i, Y_i - \hat{q}_{1-\alpha/2}(X_i) \right\}$ $\hat{\mathcal{L}}_{\alpha}^{\mathrm{CQR}}\left(X_{n+1}\right) = \left[\hat{q}_{\alpha/2}\left(X_{n+1}\right) - \hat{Q}_{1-\alpha}\left(\mathcal{E}^{\mathrm{CQR}};\mathcal{I}_{2}\right), \hat{q}_{1-\alpha/2}\left(X_{n+1}\right) + \hat{Q}_{1-\alpha}\left(\mathcal{E}^{\mathrm{CQR}};\mathcal{I}_{2}\right)\right]$ i.i.d + regularity + consistency $C_{\alpha}^{\text{oracle}}(X_{n+1}) = [q_{\alpha/2}(X_{n+1}), q_{1-\alpha/2}(X_{n+1})]$ $\mathbb{P}\left|\mathbb{E}\left|\left(\hat{q}_{\alpha/2}(X)-q_{\alpha/2}(X)\right)^2\mid\hat{q}_{\alpha/2},\hat{q}_{1-\alpha/2}\right|\leq\eta_n\right|\geq1-\rho_n$ $\mathbb{P}\left[\mathbb{E}\left[\left(\hat{q}_{1-\alpha/2}(X)-q_{1-\alpha/2}(X)\right)^2\mid\hat{q}_{\alpha/2},\hat{q}_{1-\alpha/2}\right]\leq\eta_n\right]\geq1-\rho_n,$

for some sequences $\eta_n = o(1)$ and $\rho_n = o(1)$, as $n \to \infty$.

$$L\left(\hat{\mathcal{C}}_{lpha}\left(X_{n+1}
ight) riangle C_{lpha}^{\mathsf{oracle}}\left(X_{n+1}
ight)
ight) = o_{\mathbb{P}}(1)$$

- holdout method
- 2 conformal under covariate shift
- Onter the second sec

 $\widehat{q}_{n,\alpha}^+\{v_i\} = \text{ the } \lceil (1-lpha)(n+1) \rceil$ -th smallest value of v_1, \ldots, v_n ,

 $\widehat{q}_{n,\alpha}^{-}\left\{v_{i}\right\} = \text{ the } \left\lfloor\alpha(n+1)\right\rfloor \text{-th smallest value of } v_{1},\ldots,v_{n}=-\widehat{q}_{n,\alpha}^{+}\left\{-v_{i}\right\}.$

• Jackknife (no holdout), no theoretical guarantee

$$\widehat{C}_{n,\alpha}^{\mathsf{jackknife}}\left(X_{n+1}\right) = \widehat{\mu}\left(X_{n+1}\right) \pm \widehat{q}_{n,\alpha}^{+}\left\{\left|Y_{i} - \widehat{\mu}_{-i}\left(X_{i}\right)\right|\right\}$$

• Split conformal: train and holdout

$$\widehat{C}_{n,\alpha}^{\mathsf{split},\mathsf{conf}}\left(X_{n+1}\right) = \widehat{\mu}\left(X_{n+1}\right) \pm \widehat{q}_{n,\alpha}^{+}\left\{\left|Y_{i} - \widehat{\mu}\left(X_{i}\right)\right|, i \in \mathit{holdout}\right\}$$

Jackknife+

• Theorem: $\mathbb{P}\left\{Y_{n+1}\in \widehat{C}_{n,lpha}^{ ext{jackknife}}+(X_{n+1})
ight\}\geq 1-2lpha$

• To ease computation, K-fold CV+

$$R_{i}^{\mathrm{CV}} = \left|Y_{i} - \widehat{\mu}_{-S_{k(i)}}(X_{i})\right|, i = 1, \dots, n$$

 $\widehat{C}_{n,K,\alpha}^{\text{CV+}}(X_{n+1}) = \left[\widehat{q}_{n,\alpha}^{-} \left\{ \widehat{\mu}_{-S_{k(i)}}(X_{n+1}) - R_{i}^{\text{CV}} \right\}, \widehat{q}_{n,\alpha}^{+} \left\{ \widehat{\mu}_{-S_{k(i)}}(X_{n+1}) + R_{i}^{\text{CV}} \right\} \right]$ Theorem:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{n,K,\alpha}^{\mathrm{CV}+}\left(X_{n+1}\right)\right\}\geq 1-2\alpha-\sqrt{2/n}$$

Method	Assumption-free theory
Split conf. (holdout)	$\geq 1 - \alpha$ coverage
Jackknife	No guarantee
Jackknife +	$\geq 1-2lpha$ coverage
Full conformal	$\geq 1-lpha$ coverage
K-fold CV+	$\geq 1-2lpha$ coverage
Į	
Method	Model training cost
Split conf. (holdout)	1
Jackknife	п
Jackknife +	п
K-fold CV+	K
Full conformal	$n_{ m test} \cdot n_{ m grid}$

Conformal prediction under covariate shift: weighted conformal inference [TFBCR19]

$$(X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} P = P_X \times P_{Y|X}, i = 1, \dots, n,$$

 $(X_{n+1}, Y_{n+1}) \sim \widetilde{P} = \widetilde{P}_X \times P_{Y|X}, \text{ independently.}$

• Assume
$$w(X_i) = d\widetilde{P}_X(X_i) / dP_X(X_i)$$
 is known
• no covariate shift: $\frac{1}{n+1} \sum_{i=1}^n \delta_{V_i^{(x,y)}} + \frac{1}{n+1} \delta_{\infty}$

• covariate shift: $\sum_{i=1}^{n} p_i^w(x) \delta_{V_i^{(x,y)}} + p_{n+1}^w(x) \delta_{\infty}$

$$p_{i}^{w}(x) = \frac{w(X_{i})}{\sum_{j=1}^{n} w(X_{j}) + w(x)}, i = 1, \dots, n$$
$$p_{n+1}^{w}(x) = \frac{w(x)}{\sum_{j=1}^{n} w(X_{j}) + w(x)}$$

"look exchangable"

by Weihao LI

- Distribution-free but with problem-specific assumption, naive bands is not good since we do not take advantage of those assumption.
 - Adaptive conformal inference under distribution shift: online setting [GC22]
 - Conformalized survival analysis [CLR21]: lower predictive bounds on survival times, censoring matter

$$\mathbb{P}\left(T \wedge c_0 \geq \hat{L}(X)\right) \geq 1 - \alpha$$

Onformal casual inference [LC20]

$$\mathbb{P}\left(oldsymbol{Y}(1)-oldsymbol{Y}(0)\in\hat{\mathcal{C}}_{ ext{ITE}}(X)
ight)\geq 1-lpha$$

Conformal casual inference [LC20]

by Weihao LI

Review of Conformal+methodology

Feb 11th 2023 21 / 40

Image: A matched by the second sec

Testing for outliers with conformal p-value [BCL+21]

- Clean i.i.d training data, given many testing data want to test $\mathcal{H}_{0,i}: X_i \sim P_X$, for any $X_i \in \mathcal{D}^{\text{test}}$
- marginally superuniform (conservative) p-values $\hat{u}^{(marg)}(X_{n+1})$:

$$\mathbb{P}\left[\hat{u}^{(\text{marg })}(X_{n+1}) \leq t\right] \leq t,$$

under $\mathcal{H}_{0,i}$

• Calibration-conditional conformal p-value, $\mathcal{D} = \mathcal{D}^{train} \cup \mathcal{D}^{cal}$

$$\mathbb{P}\left[\mathbb{P}\left[\hat{u}^{(\text{ccv})}\left(X_{n+1}\right) \leq t \mid \mathcal{D}\right] \leq t \text{ for all } t \in (0,1)\right] \geq 1-\delta$$

under $\mathcal{H}_{0,i}$

Significance: (1)leverage any black-box machine-learning tool
 (2) control FDR via multiple testing procedure

Feb 11th 2023 22 / 40

Functional data-conformal

The sequence z₁(·),..., z_n(·) consists now of L²[0, 1] functions. The definition of validity for a confidence predictor γ^α is:

$$\mathbb{P}\left(z_{n+1}(t) \in \gamma^{\alpha}\left(z_{1}, \ldots, z_{n}\right)(t) \forall t\right) \geq 1 - \alpha \quad \text{ for all } P.$$

To apply conformal prediction, a nonconformity measure is needed. A choice might be:

$$R_i = \int \left(z_i(t) - \bar{z}(t) \right)^2 dt$$

where $\bar{z}(t)$ is the average of the augmented data set.

Functional data-conformal

The sequence z₁(·),..., z_n(·) consists now of L²[0, 1] functions. The definition of validity for a confidence predictor γ^α is:

$$\mathbb{P}\left(z_{n+1}(t)\in\gamma^{lpha}\left(z_{1},\ldots,z_{n}
ight)(t)orall t
ight)\geq1-lpha$$
 for all $P.$

To apply conformal prediction, a nonconformity measure is needed. A choice might be:

$$R_i = \int \left(z_i(t) - \bar{z}(t) \right)^2 dt$$

where $\bar{z}(t)$ is the average of the augmented data set. Then, one more step is mandatory. Given a conformal prediction set γ^{α} , the inherent prediction bands are defined in terms of lower and upper bounds:

$$l(t) = \inf_{z \in \gamma^{\alpha}} z(t)$$
 and $u(t) = \sup_{z \in \gamma^{\alpha}} z(t).$

Consequently, thanks to provable conformal properties,

$$\mathbb{P}(I(t) \leq z_{n+1}(t) \leq u(t), \forall t) \geq 1 - \alpha$$

۰

Review of Conformal+methodology

Feb 11th 2023 24 /

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で

۰

Review of Conformal+methodology

Feb 11th 2023 25 / 40

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

۰

Review of Conformal+methodology

Feb 11th 2023 26 /

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

۰

Review of Conformal+methodology

Feb 11th 2023 27 / 40

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Stephen Bates, Emmanuel Candès, Lihua Lei, Yaniv Romano, and Matteo Sesia, *Testing for outliers with conformal p-values*, arXiv preprint arXiv:2104.08279 (2021).
- Emmanuel J Candès, Lihua Lei, and Zhimei Ren, *Conformalized survival analysis*, arXiv preprint arXiv:2103.09763 (2021).
- Isaac Gibbs and Emmanuel Candès, Conformal inference for online prediction with arbitrary distribution shifts, arXiv preprint arXiv:2208.08401 (2022).
- Lihua Lei and Emmanuel J Candès, *Conformal inference of counterfactuals and individual treatment effects*, arXiv preprint arXiv:2006.06138 (2020).

Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas, Conformal prediction under covariate shift, Advances in neural information processing systems 32 (2019).

Testing for outliers with conformal p-value [BCL+21]

- Clean i.i.d observed data from P_X, given many testing data want to test H_{0,i} : X_i ~ P_X, for any X_i ∈ D^{test}
- marginally superuniform (conservative) p-values $\hat{u}^{(marg)}(X_{n+1})$:

$$\mathbb{P}\left[\hat{u}^{(\text{marg })}(X_{n+1}) \leq t\right] \leq t,$$

under $\mathcal{H}_{0,i}$

• Calibration-conditional conformal p-value, $\mathcal{D} = \mathcal{D}^{train} \cup \mathcal{D}^{cal}$

$$\mathbb{P}\left[\mathbb{P}\left[\hat{u}^{(\text{ccv})}\left(X_{n+1}\right) \leq t \mid \mathcal{D}\right] \leq t \text{ for all } t \in (0,1)\right] \geq 1-\delta$$

under $\mathcal{H}_{0,i}$

Significance: (1)leverage any black-box machine-learning tool
 (2) control FDR via multiple testing procedure

Functional data-conformal

The sequence z₁(·),..., z_n(·) consists now of L²[0, 1] functions. The definition of validity for a confidence predictor γ^α is:

$$\mathbb{P}\left(z_{n+1}(t) \in \gamma^{\alpha}\left(z_{1}, \ldots, z_{n}\right)(t) \forall t\right) \geq 1 - \alpha \quad \text{ for all } P.$$

To apply conformal prediction, a nonconformity measure is needed. A choice might be:

$$R_i = \int \left(z_i(t) - \bar{z}(t) \right)^2 dt$$

where $\bar{z}(t)$ is the average of the augmented data set.

Functional data-conformal

The sequence z₁(·),..., z_n(·) consists now of L²[0, 1] functions. The definition of validity for a confidence predictor γ^α is:

$$\mathbb{P}\left(z_{n+1}(t)\in\gamma^{lpha}\left(z_{1},\ldots,z_{n}
ight)(t)orall t
ight)\geq1-lpha$$
 for all $P.$

To apply conformal prediction, a nonconformity measure is needed. A choice might be:

$$R_i = \int \left(z_i(t) - \bar{z}(t) \right)^2 dt$$

where $\bar{z}(t)$ is the average of the augmented data set. Then, one more step is mandatory. Given a conformal prediction set γ^{α} , the inherent prediction bands are defined in terms of lower and upper bounds:

$$l(t) = \inf_{z \in \gamma^{\alpha}} z(t)$$
 and $u(t) = \sup_{z \in \gamma^{\alpha}} z(t).$

Consequently, thanks to provable conformal properties,

$$\mathbb{P}(I(t) \leq z_{n+1}(t) \leq u(t), \forall t) \geq 1 - \alpha$$

Statistical accuracy

 Base estimator is accurate ⇒ the conformal prediction band is near-optimal;

Base estimator is bad, then we still have valid marginal coverage.

• Assumption A0: i.i.d. data (X_i, Y_i) with mean function $\mu(x) = \mathbb{E}(Y \mid X = x), x \in \mathbb{R}^d$.

Assumption A1: (Independent and symmetric noise) $\epsilon = Y - \mu(X)$

Statistical accuracy

 Base estimator is accurate ⇒ the conformal prediction band is near-optimal;

Base estimator is bad, then we still have valid marginal coverage.

• Assumption A0: i.i.d. data (X_i, Y_i) with mean function $\mu(x) = \mathbb{E}(Y \mid X = x), x \in \mathbb{R}^d$.

Assumption A1: (Independent and symmetric noise) $\epsilon = Y - \mu(X)$ • Two oracle bands:

Super oracle band:

$$C^*_s(x) = [\mu(x) - q_\alpha, \mu(x) + q_\alpha]$$

where q_{α} is the α upper quantile of $\mathcal{L}(|\epsilon|)$.

(i) valid conditional coverage (ii) shortest length for both conditional/marginal coverage

Q Regular oracle band:

$$C_o^*(x) = [\widehat{\mu}_n(x) - q_{n,\alpha}, \widehat{\mu}_n(x) + q_{n,\alpha}]$$

where $q_{n,\alpha}$ is the α upper quantile of $\mathcal{L}(|Y - \hat{\mu}_n(X)|)$. Only offers marginal coverage.

by Weihao LI

Property: Split conformal prediction bands

• Compare two oracle: estimation error is $\Delta_n(x) = \widehat{\mu}_n(x) - \mu(x)$

$$|q_{n,lpha}-q_{lpha}|\lesssim \mathbb{E}\Delta_n^2(X)$$

• Assumption A2: (Sampling stability). For large enough n,

$$\mathbb{P}\left(\left\|\widehat{\mu}_{n}-\widetilde{\mu}\right\|_{\infty}\geq\eta_{n}\right)\leq\rho_{n},$$

for some sequences satisfying $\eta_n = o(1)$, $\rho_n = o(1)$ as $n \to \infty$, and some function $\tilde{\mu}$.

• Theorem(Split conformal approximation of regular oracle): under A0,A1,A2, and the density of $|Y - \tilde{\mu}(X)|$, is lower bounded away from zero $\nu_{n, \text{ split}}$ denote the split conformal interval's width

$$\nu_{n,\mathrm{split}} - 2q_{n,\alpha} = O_{\mathbb{P}}\left(\rho_n + \eta_n + n^{-1/2}\right)$$

Super Oracle Approximation Under Consistency Assumptions

• Weaker condition than $\mathbb{E}\Delta_n^2(X) = o(1)$ Assumption A4:(Consistency of base estimator). For *n* large enough,

$$\mathbb{P}\left(\mathbb{E}_{X}\left[\left(\widehat{\mu}_{n}(X)-\mu(X)\right)^{2}\mid\widehat{\mu}_{n}\right]\geq\eta_{n}\right)\leq\rho_{n},$$

for some sequences satisfying $\eta_{n}=o(1),
ho_{n}=o(1)$ as $n
ightarrow\infty$

• Theorem (Split conformal approximation of super oracle): under A0, A1, A4 and $|Y - \mu(X)|$ has density bounded away from zero

$$L(C_{n, \text{ split }}(X)\Delta C^*_s(X)) = o_{\mathbb{P}}(1)$$

where L(A) denotes the Lebesgue measure of a set A, and $A \triangle B$ the symmetric difference between sets A, B. Thus, $C_{n, \text{ split}}$ has asymptotic conditional coverage at the level $1 - \alpha$.

• Without modeling assumption, it is known to be impossible to construct non-trival prediction intervals with guaranteed conditional coverage.

Theory of CQR

Conformity score: $E_i^{\text{CQR}} = \max \left\{ \hat{q}_{\alpha/2}(X_i) - Y_i, Y_i - \hat{q}_{1-\alpha/2}(X_i) \right\}$ $\hat{\mathcal{L}}_{\alpha}^{\mathrm{CQR}}\left(X_{n+1}\right) = \left[\hat{q}_{\alpha/2}\left(X_{n+1}\right) - \hat{Q}_{1-\alpha}\left(\mathcal{E}^{\mathrm{CQR}};\mathcal{I}_{2}\right), \hat{q}_{1-\alpha/2}\left(X_{n+1}\right) + \hat{Q}_{1-\alpha}\left(\mathcal{E}^{\mathrm{CQR}};\mathcal{I}_{2}\right)\right]$ i.i.d + regularity + consistency $C_{\alpha}^{\text{oracle}}(X_{n+1}) = [q_{\alpha/2}(X_{n+1}), q_{1-\alpha/2}(X_{n+1})]$ $\mathbb{P}\left|\mathbb{E}\left|\left(\hat{q}_{\alpha/2}(X)-q_{\alpha/2}(X)\right)^2\mid\hat{q}_{\alpha/2},\hat{q}_{1-\alpha/2}\right|\leq\eta_n\right|\geq1-\rho_n$ $\mathbb{P}\left[\mathbb{E}\left[\left(\hat{q}_{1-\alpha/2}(X)-q_{1-\alpha/2}(X)\right)^2\mid\hat{q}_{\alpha/2},\hat{q}_{1-\alpha/2}\right]\leq\eta_n\right]\geq1-\rho_n,$

for some sequences $\eta_n = o(1)$ and $\rho_n = o(1)$, as $n \to \infty$.

$$L\left(\hat{\mathcal{C}}_{lpha}\left(X_{n+1}
ight) riangle C_{lpha}^{\mathsf{oracle}}\left(X_{n+1}
ight)
ight) = o_{\mathbb{P}}(1)$$

۰

Review of Conformal+methodology

Feb 11th 2023 37 / 40

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で

۰

Review of Conformal+methodology

Feb 11th 2023 38 /

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

۰

Review of Conformal+methodology

Feb 11th 2023 39 / 4

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で

۰

Review of Conformal+methodology

Feb 11th 2023 40 /

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで