Introduction of Conformal Inference

by Weihao LI

12th April 2023

by Weihao LI

Introduction of Conformal Inference

12th April 2023 1 / 25

4 A N

Outline

- Objective
- Easy exercise
- Construction
- Conformal quantile regression
- Weighted Conformal prediction
 - Application: counterfactual inference
 - Application: predict survival time

Conformal p-value

Testing for outliers

Reference

Objective of conformal inference

 Informally, we want to build confidence interval without any distributional assumption.

• • • • • • • • • •

- Informally, we want to build confidence interval without any distributional assumption.
- Consider i.i.d. regression data

$$Z_1,\ldots,Z_n\sim P$$
,

where each $Z_i = (X_i, Y_i)$ is a random variable in $\mathbb{R}^d \times \mathbb{R}$, comprised of a response variable Y_i and a d-dimensional vector of features (or predictors, or covariates) $X_i = (X_i(1), \dots, X_i(d))$.

- Informally, we want to build confidence interval without any distributional assumption.
- Consider i.i.d. regression data

$$Z_1,\ldots,Z_n\sim P$$
,

where each $Z_i = (X_i, Y_i)$ is a random variable in $\mathbb{R}^d \times \mathbb{R}$, comprised of a response variable Y_i and a d-dimensional vector of features (or predictors, or covariates) $X_i = (X_i(1), \dots, X_i(d))$.

• Constructing a prediction interval $C\subseteq \mathbb{R}^d\times \mathbb{R}$ based on Z_1,\ldots,Z_n with the property that

$$\mathbb{P}\left(Y_{n+1} \in C\left(X_{n+1}\right)\right) \ge 1 - \alpha \tag{1}$$

Exercise:

Suppose we have positive i.i.d random variables R_1, \dots, R_n, R_{n+1} . Let $Q_{1-\alpha}$ denote the empirical $1 - \alpha$ quantile for $\{R_1, \dots, R_n\}$, what is approximate value of $\mathbb{P}(R_{n+1} \leq Q_{1-\alpha})$?

< 🗇 > < 🖻

Exercise:

Suppose we have positive i.i.d random variables R_1, \dots, R_n, R_{n+1} . Let $Q_{1-\alpha}$ denote the empirical $1 - \alpha$ quantile for $\{R_1, \dots, R_n\}$, what is approximate value of $\mathbb{P}(R_{n+1} \leq Q_{1-\alpha})$? **Answer:** Consider ordered statisitics for n + 1 R_i

$$R_{(1)}, R_{(2)}, R_{(3)}, \cdots, R_{(n)}, R_{(n+1)}$$

 $\mathbb{P}(\mathsf{R}_{n+1} \leq \mathsf{Q}_{1-\alpha}) \approx \mathbb{P}(\mathsf{R}_{n+1} \text{ rank lower than } (1-\alpha)(n+1)) \approx 1-\alpha$ (2)

Exercise:

Suppose we have positive i.i.d random variables R_1, \dots, R_n, R_{n+1} . Let $Q_{1-\alpha}$ denote the empirical $1 - \alpha$ quantile for $\{R_1, \dots, R_n\}$, what is approximate value of $\mathbb{P}(R_{n+1} \leq Q_{1-\alpha})$? **Answer:** Consider ordered statisitics for n + 1 R_i

$$R_{(1)}, R_{(2)}, R_{(3)}, \cdots, R_{(n)}, R_{(n+1)}$$

 $\mathbb{P}(\mathsf{R}_{n+1} \le \mathsf{Q}_{1-\alpha}) \approx \mathbb{P}(\mathsf{R}_{n+1} \text{ rank lower than } (1-\alpha)(n+1)) \approx 1-\alpha \ (2)$ Inverse the empirical CDF: Quantile $\left(1-\alpha; \frac{1}{n}\sum_{i=1}^{n}\delta_{\mathsf{R}_{i}}\right)$ Remark: relax i.i.d to exchangeable.

• Suppose we have estimator $\hat{\mu} : X \to \mathcal{Y}$ independent of our data $(X_1, Y_1), \cdots (X_n, Y_n), (X_{n+1}, Y_{n+1} \text{ unknown})$

4 A N

- Suppose we have estimator $\hat{\mu} : \mathcal{X} \to \mathcal{Y}$ independent of our data $(X_1, Y_1), \cdots (X_n, Y_n), (X_{n+1}, Y_{n+1} \text{ unknown})$
- Apply $\hat{\mu}$ to n + 1 data points, $R_i := |Y_i \hat{\mu}(X_i)|$, then we know those $R_1 \cdots R_n$, R_{n+1} are i.i.d.

- Suppose we have estimator $\hat{\mu} : \mathcal{X} \to \mathcal{Y}$ independent of our data $(X_1, Y_1), \cdots (X_n, Y_n), (X_{n+1}, Y_{n+1} \text{ unknown})$
- Apply $\hat{\mu}$ to n + 1 data points, $R_i := |Y_i \hat{\mu}(X_i)|$, then we know those $R_1 \cdots R_n$, R_{n+1} are i.i.d.
- By simple exercise: Let $Q_{1-\alpha}$ denote 1α quantile for $\{R_1, \dots, R_n\}$

$$1 - \alpha \approx \mathbb{P}(\mathsf{R}_{\mathsf{n}+1} \leq \mathsf{Q}_{1-\alpha}) = \mathbb{P}(|\mathsf{Y}_{\mathsf{n}+1} - \hat{\mu}(\mathsf{X}_{\mathsf{n}+1})| \leq \mathsf{Q}_{1-\alpha})$$

$$\Rightarrow \mathbb{P}(\mathsf{Y}_{\mathsf{n}+1} \in [\hat{\mu}(\mathsf{X}_{\mathsf{n}+1}) - \mathsf{Q}_{1-\alpha}, \hat{\mu}(\mathsf{X}_{\mathsf{n}+1}) + \mathsf{Q}_{1-\alpha}]) \approx 1 - \alpha$$

- Suppose we have estimator $\hat{\mu} : X \to \mathcal{Y}$ independent of our data $(X_1, Y_1), \cdots (X_n, Y_n), (X_{n+1}, Y_{n+1} \text{ unknown})$
- Apply $\hat{\mu}$ to n + 1 data points, $R_i := |Y_i \hat{\mu}(X_i)|$, then we know those $R_1 \cdots R_n$, R_{n+1} are i.i.d.
- By simple exercise: Let $Q_{1-\alpha}$ denote 1α quantile for $\{R_1, \dots, R_n\}$

$$1 - \alpha \approx \mathbb{P}(\mathsf{R}_{\mathsf{n}+1} \le \mathsf{Q}_{1-\alpha}) = \mathbb{P}(|\mathsf{Y}_{\mathsf{n}+1} - \hat{\mu}(\mathsf{X}_{\mathsf{n}+1})| \le \mathsf{Q}_{1-\alpha})$$

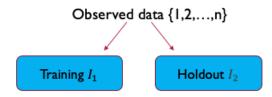
$$\Rightarrow \mathbb{P}(\mathsf{Y}_{\mathsf{n}+1} \in [\hat{\mu}(\mathsf{X}_{\mathsf{n}+1}) - \mathsf{Q}_{1-\alpha}, \hat{\mu}(\mathsf{X}_{\mathsf{n}+1}) + \mathsf{Q}_{1-\alpha}]) \approx 1 - \alpha$$

• [LGR⁺18] Define $C_{split}(x) = [\widehat{\mu}(x) - Q_{1-\alpha}, \widehat{\mu}(x) + Q_{1-\alpha}]$ $1 - \alpha \le \mathbb{P}(Y_{n+1} \in C_{split}(X_{n+1})) \le 1 - \alpha + \frac{2}{n+2}$

• How to get $\hat{\mu}$:

• • • • • • • • • • • •

How to get μ̂:



For **any** regression algorithm \mathcal{A} $\widehat{\mu} = \mathcal{A}(\{(X_i, Y_i) : i \in \mathcal{I}_1\})$ $R_i = |Y_i - \widehat{\mu}(X_i)|, i \in \mathcal{I}_2$ $Q_{1-\alpha}$ is $(1 - \alpha)(|\mathcal{I}_2| + 1)$ quantile of $\{R_i : i \in \mathcal{I}_2\}$ Return $C_{\text{split}}(x) = [\widehat{\mu}(x) - Q_{1-\alpha}, \widehat{\mu}(x) + Q_{1-\alpha}]$, for all $x \in \mathbb{R}^d$

$$C_{\text{split}}(X_{n+1}) = \left[\widehat{\mu}(X_{n+1}) - Q_{1-\alpha}, \widehat{\mu}(X_{n+1}) + Q_{1-\alpha}\right]$$

• Marginal coverage: \mathbb{P} is over joint distribution of (X, Y), i.e. $\mathbb{P}_{(X,Y)}$ $1 - \alpha \leq \mathbb{P}_{(X,Y)} \left(Y_{n+1} \in C_{\text{split}} (X_{n+1}) \right) \leq 1 - \alpha + \frac{2}{|I_2| + 2}$

$$C_{\text{split}}(X_{n+1}) = \left[\widehat{\mu}(X_{n+1}) - Q_{1-\alpha}, \widehat{\mu}(X_{n+1}) + Q_{1-\alpha}\right]$$

• Marginal coverage: \mathbb{P} is over joint distribution of (X, Y), i.e. $\mathbb{P}_{(X,Y)}$ $1 - \alpha \leq \mathbb{P}_{(X,Y)} \left(Y_{n+1} \in C_{\text{split}} (X_{n+1}) \right) \leq 1 - \alpha + \frac{2}{|\mathcal{I}_2| + 2}$

Much stronger property

$$\mathbb{P}(\mathsf{Y}_{\mathsf{n}+1} \in \mathsf{C}(\mathsf{x}) \mid \mathsf{X}_{\mathsf{n}+1} = \mathsf{x}) \ge 1 - \alpha \text{ for all } \mathsf{x} \in \mathbb{R}^{\mathsf{d}}$$

$$C_{\text{split}}\left(X_{n+1}\right) = \left[\widehat{\mu}(X_{n+1}) - Q_{1-\alpha}, \widehat{\mu}(X_{n+1}) + Q_{1-\alpha}\right]$$

• Marginal coverage: $\mathbb P$ is over joint distribution of (X, Y),i.e. $\mathbb P_{(X,Y)}$

$$1 - \alpha \leq \mathbb{P}_{(X,Y)}\left(Y_{n+1} \in C_{\text{split}}\left(X_{n+1}\right)\right) \leq 1 - \alpha + \frac{2}{|\mathcal{I}_2| + 2}$$

Much stronger property

$$\mathbb{P}\left(\mathsf{Y}_{\mathsf{n}+1}\in\mathsf{C}(\mathsf{x})\mid\mathsf{X}_{\mathsf{n}+1}=\mathsf{x}
ight)\geq\mathsf{1}-lpha$$
 for all $\mathsf{x}\in\mathbb{R}^\mathsf{d}$

Problem of C_{split}: Constant CI width equal to 2Q_{1-α} for any X_{n+1},

$$C_{\text{split}}\left(X_{n+1}\right) = \left[\widehat{\mu}(X_{n+1}) - Q_{1-\alpha}, \widehat{\mu}(X_{n+1}) + Q_{1-\alpha}\right]$$

$$1 - \alpha \leq \mathbb{P}_{(X,Y)}\left(Y_{n+1} \in C_{\text{split}}\left(X_{n+1}\right)\right) \leq 1 - \alpha + \frac{2}{|\mathcal{I}_2| + 2}$$

Much stronger property

$$\mathbb{P}\left(\mathsf{Y}_{\mathsf{n}+1}\in\mathsf{C}(\mathsf{x})\mid\mathsf{X}_{\mathsf{n}+1}=\mathsf{x}
ight)\geq1-lpha$$
 for all $\mathsf{x}\in\mathbb{R}^{\mathsf{d}}$

Problem of C_{split}: Constant CI width equal to 2Q_{1-α} for any X_{n+1}, solution: use training data to fit an local variability ρ̂(x)

$$\mathsf{R}_{n+1} = \frac{\left|\mathsf{Y}_{n+1} - \widehat{\mu}\left(\mathsf{X}_{n+1}\right)\right|}{\widehat{\rho}\left(\mathsf{X}_{n+1}\right)}, \quad \mathsf{R}_{i} = \frac{\left|\mathsf{Y}_{i} - \widehat{\mu}\left(\mathsf{X}_{i}\right)\right|}{\widehat{\rho}\left(\mathsf{X}_{i}\right)}, i \in \mathcal{I}_{2}$$

 $C_{\text{split}}^{\text{local}}(X_{n+1}) = [\widehat{\mu}(X_{n+1}) - \widehat{\rho}(X_{n+1}) Q_{1-\alpha}, \widehat{\mu}(X_{n+1}) + \widehat{\rho}(X_{n+1}) Q_{1-\alpha}]$

Use q_α(·) denote quantile function. Natrually, [q_α(Y), q_{1-α}(Y)] is best 1 − α CI for Y.

- Use q_α(·) denote quantile function. Natrually, [q_α(Y), q_{1-α}(Y)] is best 1 − α CI for Y.
- Training I_1 , holdout I_2 . For any quantile regression algorithm \mathcal{A} $\widehat{q} = \mathcal{A}(\{(X_i, Y_i) : i \in I_1\})$ $R_i^{CQR} = \max\{\widehat{q}_{\alpha/2}(X_i) - Y_i, Y_i - \widehat{q}_{1-\alpha/2}(X_i)\}, i \in I_2$ $Q_{1-\alpha} \text{ is } (1-\alpha)(|I_2|+1) \text{ quantile of } \{R_i^{CQR} : i \in I_2\}$ Return $C_{\text{split}}^{CQR}(x) = [\widehat{q}_{\alpha/2}(x) - Q_{1-\alpha}, \widehat{q}_{1-\alpha/2}(x) + Q_{1-\alpha}]$ $(\max\{q_1 - Y, Y - q_2\} \le Q \Rightarrow Y \in [q_1 - Q, q_2 + Q])$

- Use q_α(·) denote quantile function. Natrually, [q_α(Y), q_{1-α}(Y)] is best 1 − α CI for Y.
- Training I_1 , holdout I_2 . For any quantile regression algorithm \mathcal{A} $\widehat{q} = \mathcal{A}(\{(X_i, Y_i) : i \in I_1\})$ $R_i^{CQR} = \max\{\widehat{q}_{\alpha/2}(X_i) - Y_i, Y_i - \widehat{q}_{1-\alpha/2}(X_i)\}, i \in I_2$ $Q_{1-\alpha}$ is $(1 - \alpha)(|I_2| + 1)$ quantile of $\{R_i^{CQR} : i \in I_2\}$ Return $C_{split}^{CQR}(x) = [\widehat{q}_{\alpha/2}(x) - Q_{1-\alpha}, \widehat{q}_{1-\alpha/2}(x) + Q_{1-\alpha}]$ $(\max\{q_1 - Y, Y - q_2\} \le Q \Rightarrow Y \in [q_1 - Q, q_2 + Q])$
- Marginal coverage:

$$1 - \alpha \leq \mathbb{P}\left(Y_{n+1} \in C_{split}^{CQR}\left(X_{n+1}\right)\right) \leq 1 - \alpha + \frac{2}{|\mathcal{I}_2| + 2}$$

- Use q_α(·) denote quantile function. Natrually, [q_α(Y), q_{1-α}(Y)] is best 1 − α CI for Y.
- Training I_1 , holdout I_2 . For any quantile regression algorithm \mathcal{A} $\widehat{q} = \mathcal{A}(\{(X_i, Y_i) : i \in I_1\})$ $R_i^{CQR} = \max\{\widehat{q}_{\alpha/2}(X_i) - Y_i, Y_i - \widehat{q}_{1-\alpha/2}(X_i)\}, i \in I_2$ $Q_{1-\alpha}$ is $(1 - \alpha)(|I_2| + 1)$ quantile of $\{R_i^{CQR} : i \in I_2\}$ Return $C_{split}^{CQR}(x) = [\widehat{q}_{\alpha/2}(x) - Q_{1-\alpha}, \widehat{q}_{1-\alpha/2}(x) + Q_{1-\alpha}]$ $(\max\{q_1 - Y, Y - q_2\} \le Q \Rightarrow Y \in [q_1 - Q, q_2 + Q])$
- Marginal coverage:

$$1 - \alpha \leq \mathbb{P}\left(\mathsf{Y}_{\mathsf{n+1}} \in \mathsf{C}_{\mathsf{split}}^{\mathsf{CQR}}\left(\mathsf{X}_{\mathsf{n+1}}\right)\right) \leq 1 - \alpha + \frac{2}{|\mathcal{I}_2| + 2}$$

Benefit: adapt to local variability.

New data may not i.i.d with previous data

$$\begin{split} (X_i,Y_i) \stackrel{i.i.d.}{\sim} & \mathsf{P} = \mathsf{P}_X \times \mathsf{P}_{Y|X}, i = 1,\ldots,n, \\ (X_{n+1},Y_{n+1}) \sim \widetilde{\mathsf{P}} = \widetilde{\mathsf{P}}_X \times \mathsf{P}_{Y|X}, \text{ independently.} \\ \text{Assume w} \left(X_i\right) = d\widetilde{\mathsf{P}}_X \left(X_i\right) / d\mathsf{P}_X \left(X_i\right) \text{ is known} \end{split}$$

New data may not i.i.d with previous data

$$\begin{aligned} & (X_i, Y_i) \stackrel{i.i.d.}{\sim} P = P_X \times P_{Y|X}, i = 1, \dots, n, \\ & (X_{n+1}, Y_{n+1}) \sim \widetilde{P} = \widetilde{P}_X \times P_{Y|X}, \text{ independently.} \\ & \text{Assume w} (X_i) = d\widetilde{P}_X (X_i) / dP_X (X_i) \text{ is known} \\ & \text{o no covariate shift: } 1 - \alpha \text{ quantile of } \frac{1}{n} \sum_{i=1}^n \delta_{R_i} \end{aligned}$$

New data may not i.i.d with previous data

$$\begin{array}{l} (X_i,Y_i) \stackrel{i.i.d.}{\sim} P = P_X \times P_{Y|X}, i = 1, \ldots, n, \\ (X_{n+1},Y_{n+1}) \sim \widetilde{P} = \widetilde{P}_X \times P_{Y|X}, \text{ independently.} \end{array}$$
Assume w (X_i) = d \widetilde{P}_X (X_i) /dP_X (X_i) is known
no covariate shift: $1 - \alpha$ quantile of $\frac{1}{n} \sum_{i=1}^n \delta_{B_i}$
covariate shift: $1 - \alpha$ quantile of $\frac{1}{n} \sum_{i=1}^n p_i^w \delta_{B_i}$

$$p_{i}^{w} = \frac{w(X_{i})}{\sum_{j=1}^{n+1} w(X_{j})}, i = 1, ..., n$$

New data may not i.i.d with previous data

$$\begin{array}{l} (X_i,Y_i) \stackrel{i.i.d.}{\sim} P = P_X \times P_{Y|X}, i=1,\ldots,n, \\ (X_{n+1},Y_{n+1}) \sim \widetilde{P} = \widetilde{P}_X \times P_{Y|X}, \text{ independently} \\ \text{Assume w } (X_i) = d\widetilde{P}_X \left(X_i\right) / dP_X \left(X_i\right) \text{ is known} \\ \text{no covariate shift: } 1 - \alpha \text{ quantile of } \frac{1}{n} \sum_{i=1}^n \delta_{R_i} \\ \text{covariate shift: } 1 - \alpha \text{ quantile of } \frac{1}{n} \sum_{i=1}^n p_i^w \delta_{R_i} \end{array}$$

$$p_{i}^{w} = \frac{w\left(X_{i}\right)}{\sum_{j=1}^{n+1} w\left(X_{j}\right)}, i = 1, \dots, n$$

• Construction: $C_{\text{split}}^{w}(x) = [\widehat{\mu}(x) - Q_{1-\alpha'}^{w}\widehat{\mu}(x) + Q_{1-\alpha}^{w}]$

$$\mathbb{P}\left(Y_{n+1} \in C^{w}_{\text{split}} (X_{n+1})\right) \ge 1 - \alpha$$

Inference of counterfactuals? Potential outcomes

Unit	x _i	Ti	$Y_i(1)$	$Y_i(0)$	Y ^{obs}
Treatment Group					
1	\checkmark	1	\checkmark	х	$Y_{1}(1)$
2	\checkmark	1	\checkmark	х	$Y_{2}(1)$
3	\checkmark	1	\checkmark	х	$Y_{3}(1)$
4	\checkmark	1	\checkmark	х	$Y_4(1)$
5	\checkmark	1	\checkmark	х	$Y_{5}(1)$
Control Group					
6	\checkmark	0	х	\checkmark	$Y_{6}(0)$
7	\checkmark	0	х	\checkmark	$Y_{7}(0)$
8	\checkmark	0	х	\checkmark	$Y_{8}(0)$
9	\checkmark	0	х	\checkmark	$Y_{9}(0)$
10	\checkmark	0	Х	\checkmark	$Y_{10}(0)$

Inference of counterfactuals? Potential outcomes [LC20]

Assumption

- stable unit treatment values (SUTVA)
- (i.i.d.)
- unconfoundedness $(Y(1), Y(0)) \perp T \mid X$
- Individual treatment effect(ITE) τ_i is defined as

$$\tau_i \triangleq Y_i(1) - Y_i(0).$$

Inference of counterfactuals? Potential outcomes [LC20]

Assumption

- stable unit treatment values (SUTVA)
- (i.i.d.)
- unconfoundedness $(Y(1), Y(0)) \perp T \mid X$
- Individual treatment effect(ITE) τ_i is defined as

$$\tau_i \triangleq Y_i(1) - Y_i(0).$$

 τ_i never observed.

• Traditional target: CATE, $\tau(x) \triangleq \mathbb{E}[Y(1) - Y(0) | X = x]$

Inference of counterfactuals? Potential outcomes [LC20]

Assumption

- stable unit treatment values (SUTVA)
- (i.i.d.)
- unconfoundedness $(Y(1), Y(0)) \perp T \mid X$
- Individual treatment effect(ITE) τ_i is defined as

$$\tau_i \triangleq Y_i(1) - Y_i(0).$$

 τ_i never observed.

- Traditional target: CATE, $\tau(x) \triangleq \mathbb{E}[Y(1) Y(0) | X = x]$
- Goal: find interval estimate $\hat{C}_t(X)$, s.t.,

$$\mathbb{P}\left(\mathsf{Y}(t) \in \hat{\mathsf{C}}_t(\mathsf{X}) \mid \mathsf{T} = \mathsf{1} \right) \geq \mathsf{1} - \alpha, \quad (t = \mathsf{0}, \mathsf{1})$$

Assign treatment by a coin toss for each subject based on the propensity score e(x)

••••

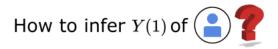
 $\mathbb{P}(ext{treated} \mid X = x) = e(x)$ $\mathbb{P}(ext{control} \mid X = x) = 1 - e(x)$

Each subject has potential outcomes (Y(1), Y(0)) and the observed outcome Y^{obs}

Observed

SUTVA $Y^{obs} = Y(1)$ $Y^{obs} = Y(0)$

Observed



Introduction of Conformal Inference

Observed

12th April 2023 15 / 25

Covariate shift under unconfoundedness $Y(1) \perp T \mid X$

$P_{X|T=1} \times P_{Y(1)|X}$

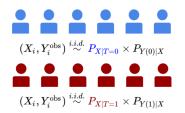
by Weihao LI

 $P_{X|T=0} \times P_{Y(1)|X}$

Introduction of Conformal Inference

12th April 2023 16 / 25

Counterfactual inference

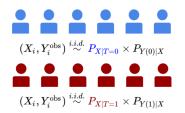


Use i.i.d. samples (observed treated units) from $P_{X|T=1} \times P_{Y(1)|X}$ to construct $\hat{C}_1(X)$ with

$$\mathbb{P}(Y(1) \in \hat{C}_1(X)) \ge 90\%$$
 under $\mathsf{P}_{X|T=0} \times \mathsf{P}_{Y(1)|X}$

Covariate shift
$$w(x) \triangleq \frac{dP_{X|T=0}}{dP_{X|T=1}}(x)$$

Counterfactual inference



Use i.i.d. samples (observed treated units) from $P_{X|T=1} \times P_{Y(1)|X}$ to construct $\hat{C}_1(X)$ with

 $\mathbb{P}\left(Y(1) \in \hat{C}_1(X)\right) \ge 90\% \text{ under } \mathsf{P}_{X|T=0} \times \mathsf{P}_{Y(1)|X}$

Covariate shift
$$w(x) \triangleq \frac{dP_{X|T=0}}{dP_{X|T=1}}(x) \propto \frac{1 - e(x)}{e(x)}$$

• Observations:
$$\{(X_i, \tilde{T}_i, \Delta_i)\}_{i=1}^n$$
 i.i.d.

by Weihao LI

Э.

イロト イヨト イヨト イヨト

Observations: {(X_i, T̃_i, Δ_i)}ⁿ_{i=1} i.i.d.
 Event indicator Δ_i = I(T_i < C_i) :

$$\tilde{T}_i = \begin{cases} T_i & \text{ if } \Delta_i = 1 \\ C_i & \text{ if } \Delta_i = 0 \end{cases} \Rightarrow \tilde{T}_i = \min(T_i, C_i)$$

Conditional independent censoring: T ⊥ C | X

Observations: {(X_i, T̃_i, Δ_i)}ⁿ_{i=1} i.i.d.
 Event indicator Δ_i = I(T_i < C_i) :

$$\tilde{T}_i = \begin{cases} T_i & \text{ if } \Delta_i = 1 \\ C_i & \text{ if } \Delta_i = 0 \end{cases} \Rightarrow \tilde{T}_i = \min(T_i, C_i)$$

Conditional independent censoring: T L C | X
Objective:

$$\mathbb{P}(\mathsf{T}_{\mathsf{n}+1} \ge \hat{\mathsf{L}}(\mathsf{X}_{\mathsf{n}+1})) \ge 1 - \alpha$$

Observations: {(X_i, T̃_i, Δ_i)}ⁿ_{i=1} i.i.d.
 Event indicator Δ_i = I(T_i < C_i) :

$$\tilde{T}_i = \begin{cases} T_i & \text{ if } \Delta_i = 1 \\ C_i & \text{ if } \Delta_i = 0 \end{cases} \Rightarrow \tilde{T}_i = \min(T_i, C_i)$$

- Conditional independent censoring: T \perp C | X
- Objective:

$$P(\mathsf{T}_{\mathsf{n}+1} \ge \hat{\mathsf{L}}(\mathsf{X}_{\mathsf{n}+1})) \ge 1 - \alpha$$

• Naive solution: $T_{n+1} \ge \tilde{T}_{n+1}$

$$\mathbb{P}(\mathsf{T}_{n+1} \geq \hat{\mathsf{L}}(\mathsf{X}_{n+1})) \geq \mathbb{P}(\tilde{\mathsf{T}}_{n+1} \geq \hat{\mathsf{L}}(\mathsf{X}_{n+1})) \geq 1 - \alpha$$

Observations: {(X_i, T̃_i, Δ_i)}ⁿ_{i=1} i.i.d.
 Event indicator Δ_i = I(T_i < C_i) :

$$\tilde{T}_i = \begin{cases} T_i & \text{ if } \Delta_i = 1 \\ C_i & \text{ if } \Delta_i = 0 \end{cases} \Rightarrow \tilde{T}_i = \min(T_i, C_i)$$

- Conditional independent censoring: T \perp C | X
- Objective:

$$\mathbb{P}(\mathsf{T}_{\mathsf{n}+1} \ge \hat{\mathsf{L}}(\mathsf{X}_{\mathsf{n}+1})) \ge 1 - \alpha$$

• Naive solution: $T_{n+1} \ge \tilde{T}_{n+1}$

$$\mathbb{P}(\mathsf{T}_{n+1} \geq \hat{\mathsf{L}}(\mathsf{X}_{n+1})) \geq \mathbb{P}(\tilde{\mathsf{T}}_{n+1} \geq \hat{\mathsf{L}}(\mathsf{X}_{n+1})) \geq 1 - \alpha$$

Bad even if we have oracle quantile $\tilde{q}_{\alpha}(X)$, $q_{\alpha}(x)$

$$\begin{split} & \mathbb{P}\left(T \ge q_{\alpha}(x) \mid X = x\right) = 1 - \alpha = \mathbb{P}\left(\widetilde{T} \ge \tilde{q}_{\alpha}(x) \mid X = x\right) \\ & = \mathbb{P}\left(T \ge \tilde{q}_{\alpha}(x) \mid X = x\right) \mathbb{P}\left(C \ge \tilde{q}_{\alpha}(x) \mid X = x\right) \end{split}$$

Observations: {(X_i, T̃_i, Δ_i)}ⁿ_{i=1} i.i.d.
 Event indicator Δ_i = I(T_i < C_i) :

$$\tilde{T}_i = \begin{cases} T_i & \text{ if } \Delta_i = 1 \\ C_i & \text{ if } \Delta_i = 0 \end{cases} \Rightarrow \tilde{T}_i = \min(T_i, C_i)$$

- Conditional independent censoring: T L C | X
- Objective:

$$\mathbb{P}(\mathsf{T}_{\mathsf{n}+1} \ge \hat{\mathsf{L}}(\mathsf{X}_{\mathsf{n}+1})) \ge 1 - \alpha$$

• Naive solution: $T_{n+1} \ge \tilde{T}_{n+1}$

$$\mathbb{P}(\mathsf{T}_{n+1} \geq \hat{\mathsf{L}}(\mathsf{X}_{n+1})) \geq \mathbb{P}(\tilde{\mathsf{T}}_{n+1} \geq \hat{\mathsf{L}}(\mathsf{X}_{n+1})) \geq 1 - \alpha$$

Bad even if we have oracle quantile $\tilde{q}_{\alpha}(X)$, $q_{\alpha}(x)$

$$\mathbb{P}\left(\mathsf{T} \geq \mathsf{q}_{\alpha}(\mathsf{x}) \mid \mathsf{X} = \mathsf{x}\right) = 1 - \alpha = \mathbb{P}\left(\widetilde{\mathsf{T}} \geq \widetilde{\mathsf{q}}_{\alpha}(\mathsf{x}) \mid \mathsf{X} = \mathsf{x}\right)$$

$$= \mathbb{P}\left(\mathsf{T} \geq \tilde{\mathsf{q}}_{\alpha}(x) \mid \mathsf{X} = x\right) \mathbb{P}\left(\mathsf{C} \geq \tilde{\mathsf{q}}_{\alpha}(x) \mid \mathsf{X} = x\right)$$

small censoring time is bad, conservative.

Treat T as a "potential outcome" under the "treatment" $\Delta = 1$?

• Event indicator $\Delta_i = I(T_i < C_i)$:

$$\tilde{T}_i = \begin{cases} T_i & \text{ if } \Delta_i = 1 \\ C_i & \text{ if } \Delta_i = 0 \end{cases}$$

- E

Treat T as a "potential outcome" under the "treatment" $\Delta=1$?

• Event indicator $\Delta_i = I(T_i < C_i)$:

$$\tilde{T}_i = \begin{cases} T_i & \text{ if } \Delta_i = 1 \\ C_i & \text{ if } \Delta_i = 0 \end{cases}$$

• Invalid because "unconfoundedness" does not hold:

$$(T,C) \not\perp I(T < C) \mid X$$

 $(X_i,T_i)_{\Delta_i=1}$ has shifts in both the covariate distribution and conditional distribution

• What group should we condition on?

- Small censoring time is bad → condition on group with larger censoring time? E.g. C ≥ c₀
- Obviously $(X, C, T) \stackrel{d}{\neq} (X, C, T) \mid C \ge c_0.$

$$\mathsf{P}_{(X,\widetilde{T})|C \geq c_0} = \mathsf{P}_{X|C \geq c_0} \times \mathsf{P}_{\widetilde{T}|X,C \geq c_0}$$

shift in both distribution.

- Small censoring time is bad → condition on group with larger censoring time? E.g. C ≥ c₀
- Obviously $(X, C, T) \stackrel{d}{\neq} (X, C, T) \mid C \geq c_0$.

$$\mathsf{P}_{(X,\widetilde{T})|C\geq c_0}=\mathsf{P}_{X|C\geq c_0}\times\mathsf{P}_{\widetilde{T}|X,C\geq c_0}$$

shift in both distribution.

• Consider new censored time $\widetilde{T} \wedge c_0$, where $a \wedge b = \min\{a, b\}$

- Small censoring time is bad → condition on group with larger censoring time? E.g. C ≥ c₀
- Obviously $(X, C, T) \stackrel{d}{\neq} (X, C, T) \mid C \ge c_0$.

$$\mathsf{P}_{(X,\widetilde{T})|C \geq c_0} = \mathsf{P}_{X|C \geq c_0} \times \mathsf{P}_{\widetilde{T}|X,C \geq c_0}$$

shift in both distribution.

• Consider new censored time $\overline{T} \wedge c_0$, where $a \wedge b = \min\{a, b\}$

$$\begin{split} \mathsf{P}_{\left(X,\widetilde{T}\wedge c_{0}\right)|C\geq c_{0}} &= \mathsf{P}_{X|C\geq c_{0}}\times\mathsf{P}_{\widetilde{T}\wedge c_{0}|X,C\geq c_{0}} \stackrel{(a)}{=} \mathsf{P}_{X|C\geq c_{0}}\times\mathsf{P}_{T\wedge c_{0}|X,C\geq c_{0}} \\ &\stackrel{(b)}{=} \mathsf{P}_{X|C\geq c_{0}}\times\mathsf{P}_{T\wedge c_{0}|X} \end{split}$$

- Small censoring time is bad → condition on group with larger censoring time? E.g. C ≥ c₀
- Obviously $(X, C, T) \stackrel{d}{\neq} (X, C, T) \mid C \ge c_0.$

$$\mathsf{P}_{(X,\widetilde{T})|C \geq c_0} = \mathsf{P}_{X|C \geq c_0} \times \mathsf{P}_{\widetilde{T}|X,C \geq c_0}$$

shift in both distribution.

• Consider new censored time $\overline{T} \wedge c_0$, where $a \wedge b = \min\{a, b\}$

$$\begin{split} \mathsf{P}_{\left(X,\widetilde{T}\wedge c_{0}\right)|C\geq c_{0}} &= \mathsf{P}_{X|C\geq c_{0}}\times\mathsf{P}_{\widetilde{T}\wedge c_{0}|X,C\geq c_{0}} \stackrel{(a)}{=} \mathsf{P}_{X|C\geq c_{0}}\times\mathsf{P}_{T\wedge c_{0}|X,C\geq c_{0}} \\ &\stackrel{(b)}{=} \mathsf{P}_{X|C\geq c_{0}}\times\mathsf{P}_{T\wedge c_{0}|X} \end{split}$$

 \bullet We can build a lower bound for $T_{n+1} \wedge c_0$ via weighted conformal

$$\frac{d\mathsf{P}_{X}}{d\mathsf{P}_{X|C \ge c_{0}}}(x) = \frac{\mathbb{P}\left(C \ge c_{0}\right)}{\mathbb{P}\left(C \ge c_{0} \mid X = x\right)}$$

 Non-conformity score(S): how well a sample Z conforms to rest of data, if S is large, we say that Z is non-conforming or "strange".

- Non-conformity score(S): how well a sample Z conforms to rest of data, if S is large, we say that Z is non-conforming or "strange".
 - E.g.: $S_{n+1} = |Y_{n+1} \hat{\mu}(X_{n+1})|$, large residual \rightarrow strange \rightarrow

- Non-conformity score(S): how well a sample Z conforms to rest of data, if S is large, we say that Z is non-conforming or "strange".
 - E.g.: $S_{n+1} = |Y_{n+1} \hat{\mu}(X_{n+1})|$, large residual \rightarrow strange \rightarrow small p-value in hypothesis test.

 Non-conformity score(S): how well a sample Z conforms to rest of data, if S is large, we say that Z is non-conforming or "strange".

 E.g.: S_{n+1} = |Y_{n+1} − µ̂(X_{n+1})|, large residual→ strange → small p-value in hypothesis test.

- Non-conformity score(S): how well a sample Z conforms to rest of data, if S is large, we say that Z is non-conforming or "strange".
 - E.g.: $S_{n+1} = |Y_{n+1} \hat{\mu}(X_{n+1})|$, large residual \rightarrow strange \rightarrow small p-value in hypothesis test.

Conformity score Hypothesis test Conf Interval

Novel conformity score→ different task

 Non-conformity score(S): how well a sample Z conforms to rest of data, if S is large, we say that Z is non-conforming or "strange".

• E.g.: $S_{n+1} = |Y_{n+1} - \hat{\mu}(X_{n+1})|$, large residual \rightarrow strange \rightarrow small p-value in hypothesis test.

Conformity score Hypothesis test Conf Interval

- Novel conformity score→ different task
- Hypothesis test

H₀: X_{n+1} follow same distribution with observed data[BCL+21]

 Non-conformity score(S): how well a sample Z conforms to rest of data, if S is large, we say that Z is non-conforming or "strange".

• E.g.: $S_{n+1} = |Y_{n+1} - \hat{\mu}(X_{n+1})|$, large residual \rightarrow strange \rightarrow small p-value in hypothesis test.

Conformity score Hypothesis test Conf Interval

- Novel conformity score→ different task
- Hypothesis test
 - H₀: X_{n+1} follow same distribution with observed data[BCL+21]
 - H₀: Two-sample conditional distribution are equal [HL23]

$$\mathcal{D} = \mathcal{D}^{train} \cup \mathcal{D}^{cal}$$
, $|\mathcal{D}^{train}| = |\mathcal{D}^{cal}| = n$

• Clean i.i.d observed data from P_X , given many testing data want to test $\mathcal{H}_{0,i} : X_i \sim P_X$, for any $X_i \in \mathcal{D}^{test}$

$$\mathcal{D} = \mathcal{D}^{train} \cup \mathcal{D}^{cal}$$
, $|\mathcal{D}^{train}| = |\mathcal{D}^{cal}| = n$

- Clean i.i.d observed data from P_X , given many testing data want to test $\mathcal{H}_{0,i} : X_i \sim P_X$, for any $X_i \in \mathcal{D}^{test}$
- Machine learning tool give a score: ŝ(X_i), p-value is given by

$$\hat{u}^{(marg\,)}(X_i) = \frac{1 + \left| \left\{ j \in \mathcal{D}^{cal} : \hat{s}\left(X_j\right) \le \hat{s}(X_i) \right\} \right|}{n+1}$$

with

$$\mathbb{P} \Big[\hat{u}^{(marg\;)} \left(X_i \right) \leq t \Big] \leq t \quad \text{under} \; \mathcal{H}_{0,i}$$

$$\mathcal{D} = \mathcal{D}^{train} \cup \mathcal{D}^{cal}$$
, $|\mathcal{D}^{train}| = |\mathcal{D}^{cal}| = n$

- Clean i.i.d observed data from P_X , given many testing data want to test $\mathcal{H}_{0,i}: X_i \sim P_X$, for any $X_i \in \mathcal{D}^{test}$
- Machine learning tool give a score: ŝ(X_i), p-value is given by

$$\hat{u}^{(marg\,)}(X_i) = \frac{1 + \left| \left\{ j \in \mathcal{D}^{cal} \ : \hat{s}\left(X_j\right) \le \hat{s}(X_i) \right\} \right|}{n+1}$$

with

$$\mathbb{P} \Big[\hat{u}^{(marg\;)} \left(X_i \right) \leq t \Big] \leq t \quad \text{under} \; \mathcal{H}_{0,i}$$

• Negative result: global testing can fail:

$$H_0: X_{2n+1}, \ldots, X_{2n+m} \stackrel{i.i.d.}{\sim} P_X$$

$$\mathcal{D} = \mathcal{D}^{train} \cup \mathcal{D}^{cal}$$
, $|\mathcal{D}^{train}| = |\mathcal{D}^{cal}| = n$

- Clean i.i.d observed data from P_X , given many testing data want to test $\mathcal{H}_{0,i}: X_i \sim P_X$, for any $X_i \in \mathcal{D}^{test}$
- Machine learning tool give a score: ŝ(X_i), p-value is given by

$$\hat{u}^{(marg\,)}(X_i) = \frac{1 + \left| \left\{ j \in \mathcal{D}^{cal} \ : \hat{s}\left(X_j\right) \le \hat{s}(X_i) \right\} \right|}{n+1}$$

with

$$\mathbb{P} \Big[\hat{u}^{(marg\;)} \left(X_i \right) \leq t \Big] \leq t \quad \text{under} \; \mathcal{H}_{0,i}$$

• Negative result: global testing can fail:

$$H_0: X_{2n+1}, \ldots, X_{2n+m} \stackrel{\text{i.i.d.}}{\sim} P_X$$

• Positive result: $\{\hat{u}^{(marg)}(X_{2n+1}),\cdots \hat{u}^{(marg)}(X_{2n+m})\}$ are PRDS.

All models are wrong, but some are (hopefully) useful

< A >

All models are wrong, but some are (hopefully) useful

All models are wrong, but conformal can make them safe and useful!

Thanks!

by Weihao LI

Introduction of Conformal Inference

12th April 2023 23 / 25

- Stephen Bates, Emmanuel Candès, Lihua Lei, Yaniv Romano, and Matteo Sesia, Testing for outliers with conformal p-values, arXiv preprint arXiv:2104.08279 (2021).
- Emmanuel Candès, Lihua Lei, and Zhimei Ren, Conformalized survival analysis, Journal of the Royal Statistical Society Series B: Statistical Methodology 85 (2023), no. 1, 24–45.
- Xiaoyu Hu and Jing Lei, A two-sample conditional distribution test using conformal prediction and weighted rank sum, Journal of the American Statistical Association (2023), 1–19.
- Lihua Lei and Emmanuel J Candès, Conformal inference of counterfactuals and individual treatment effects, arXiv preprint arXiv:2006.06138 (2020).

- Jing Lei, Max GSell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman, Distribution-free predictive inference for regression, Journal of the American Statistical Association 113 (2018), no. 523, 1094–1111.
- Yaniv Romano, Evan Patterson, and Emmanuel Candes, Conformalized quantile regression, Advances in neural information processing systems 32 (2019).
- Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas, Conformal prediction under covariate shift, Advances in neural information processing systems **32** (2019).