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Objective of conformal inference

Informally, we want to build confidence interval without any
distributional assumption.
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Objective of conformal inference

Informally, we want to build confidence interval without any
distributional assumption.
Consider i.i.d. regression data

Z1, . . . ,Zn ∼ P,

where each Zi = (Xi ,Yi) is a random variable in Rd ×R,
comprised of a response variable Yi and a d-dimensional vector of
features (or predictors, or covariates) Xi = (Xi(1), . . . ,Xi(d)).
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Objective of conformal inference

Informally, we want to build confidence interval without any
distributional assumption.
Consider i.i.d. regression data

Z1, . . . ,Zn ∼ P,

where each Zi = (Xi ,Yi) is a random variable in Rd ×R,
comprised of a response variable Yi and a d-dimensional vector of
features (or predictors, or covariates) Xi = (Xi(1), . . . ,Xi(d)).
Constructing a prediction interval C ⊆ Rd ×R based on Z1, . . . ,Zn
with the property that

P (Yn+1 ∈ C (Xn+1)) ≥ 1 − α (1)
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A simple exercise

Exercise:
Suppose we have positive i.i.d random variables R1, · · · ,Rn,Rn+1. Let
Q1−α denote the empirical 1 − α quantile for {R1, · · · ,Rn}, what is
approximate value of P(Rn+1 ≤ Q1−α)?
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Suppose we have positive i.i.d random variables R1, · · · ,Rn,Rn+1. Let
Q1−α denote the empirical 1 − α quantile for {R1, · · · ,Rn}, what is
approximate value of P(Rn+1 ≤ Q1−α)?
Answer: Consider ordered statisitics for n + 1 Ri

R(1),R(2),R(3), · · · ,R(n),R(n+1)

P(Rn+1 ≤ Q1−α) ≈ P(Rn+1 rank lower than (1 − α)(n + 1)) ≈ 1 − α (2)
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A simple exercise

Exercise:
Suppose we have positive i.i.d random variables R1, · · · ,Rn,Rn+1. Let
Q1−α denote the empirical 1 − α quantile for {R1, · · · ,Rn}, what is
approximate value of P(Rn+1 ≤ Q1−α)?
Answer: Consider ordered statisitics for n + 1 Ri

R(1),R(2),R(3), · · · ,R(n),R(n+1)

P(Rn+1 ≤ Q1−α) ≈ P(Rn+1 rank lower than (1 − α)(n + 1)) ≈ 1 − α (2)

Inverse the empirical CDF: Quantile
!
1 − α; 1

n
"n

i=1 δRi

#

Remark: relax i.i.d to exchangeable.

by Weihao LI Introduction of Conformal Inference 12th April 2023 4 / 25



Construction of conformal prediction set

Suppose we have estimator µ̂ : X→ Y independent of our data
(X1,Y1), · · · (Xn,Yn), (Xn+1,Yn+1 unknown)
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Construction of conformal prediction set

Suppose we have estimator µ̂ : X→ Y independent of our data
(X1,Y1), · · · (Xn,Yn), (Xn+1,Yn+1 unknown)
Apply µ̂ to n + 1 data points, Ri := |Yi − µ̂(Xi)|, then we know
those R1 · · ·Rn,Rn+1 are i.i.d.
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Suppose we have estimator µ̂ : X→ Y independent of our data
(X1,Y1), · · · (Xn,Yn), (Xn+1,Yn+1 unknown)
Apply µ̂ to n + 1 data points, Ri := |Yi − µ̂(Xi)|, then we know
those R1 · · ·Rn,Rn+1 are i.i.d.
By simple exercise: Let Q1−α denote 1 − α quantile for {R1, · · · ,Rn}

1 − α ≈ P(Rn+1 ≤ Q1−α) = P(|Yn+1 − µ̂(Xn+1)| ≤ Q1−α)

⇒ P(Yn+1 ∈ [µ̂(Xn+1) −Q1−α, µ̂(Xn+1) + Q1−α]) ≈ 1 − α
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Construction of conformal prediction set

Suppose we have estimator µ̂ : X→ Y independent of our data
(X1,Y1), · · · (Xn,Yn), (Xn+1,Yn+1 unknown)
Apply µ̂ to n + 1 data points, Ri := |Yi − µ̂(Xi)|, then we know
those R1 · · ·Rn,Rn+1 are i.i.d.
By simple exercise: Let Q1−α denote 1 − α quantile for {R1, · · · ,Rn}

1 − α ≈ P(Rn+1 ≤ Q1−α) = P(|Yn+1 − µ̂(Xn+1)| ≤ Q1−α)

⇒ P(Yn+1 ∈ [µ̂(Xn+1) −Q1−α, µ̂(Xn+1) + Q1−α]) ≈ 1 − α

[LGR+18] Define Csplit (x) = [$µ(x) −Q1−α,$µ(x) + Q1−α]

1 − α ≤ P
!
Yn+1 ∈ Csplit (Xn+1)

#
≤ 1 − α+ 2

n + 2
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Remark on conformal prediction set

How to get µ̂:
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Remark on conformal prediction set

How to get µ̂:

For any regression algorithm A
$µ = A (

%
(Xi ,Yi) : i ∈ I1

&
)

Ri =
'''Yi −$µ (Xi)

''' , i ∈ I2
Q1−α is (1 − α)(|I2|+ 1) quantile of {Ri : i ∈ I2}
Return Csplit (x) = [$µ(x) −Q1−α,$µ(x) + Q1−α], for all x ∈ Rd
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Remark on conformal prediction set

Csplit (Xn+1) = [$µ(Xn+1) −Q1−α,$µ(Xn+1) + Q1−α]

Marginal coverage: P is over joint distribution of (X ,Y),i.e. P(X ,Y)

1 − α ≤ P(X ,Y)

!
Yn+1 ∈ Csplit (Xn+1)

#
≤ 1 − α+ 2

|I2|+ 2
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Remark on conformal prediction set

Csplit (Xn+1) = [$µ(Xn+1) −Q1−α,$µ(Xn+1) + Q1−α]

Marginal coverage: P is over joint distribution of (X ,Y),i.e. P(X ,Y)

1 − α ≤ P(X ,Y)

!
Yn+1 ∈ Csplit (Xn+1)

#
≤ 1 − α+ 2

|I2|+ 2
Much stronger property

P (Yn+1 ∈ C(x) | Xn+1 = x) ≥ 1 − α for all x ∈ Rd
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Csplit (Xn+1) = [$µ(Xn+1) −Q1−α,$µ(Xn+1) + Q1−α]

Marginal coverage: P is over joint distribution of (X ,Y),i.e. P(X ,Y)

1 − α ≤ P(X ,Y)

!
Yn+1 ∈ Csplit (Xn+1)

#
≤ 1 − α+ 2

|I2|+ 2
Much stronger property

P (Yn+1 ∈ C(x) | Xn+1 = x) ≥ 1 − α for all x ∈ Rd

Problem of Csplit : Constant CI width equal to 2Q1−α for any Xn+1,
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Remark on conformal prediction set

Csplit (Xn+1) = [$µ(Xn+1) −Q1−α,$µ(Xn+1) + Q1−α]

Marginal coverage: P is over joint distribution of (X ,Y),i.e. P(X ,Y)

1 − α ≤ P(X ,Y)

!
Yn+1 ∈ Csplit (Xn+1)

#
≤ 1 − α+ 2

|I2|+ 2
Much stronger property

P (Yn+1 ∈ C(x) | Xn+1 = x) ≥ 1 − α for all x ∈ Rd

Problem of Csplit : Constant CI width equal to 2Q1−α for any Xn+1,
solution: use training data to fit an local variability ρ̂(x)

Rn+1 =

'''Yn+1 −$µ (Xn+1)
'''

$ρ (Xn+1)
, Ri =

'''Yi −$µ (Xi)
'''

$ρ (Xi)
, i ∈ I2

C local
split (Xn+1) = [$µ(Xn+1) −$ρ (Xn+1)Q1−α,$µ(Xn+1) +$ρ (Xn+1)Q1−α]
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Alternative method: Conformal quantile regression
[RPC19]

Use qα(·) denote quantile function. Natruallly, [qα(Y),q1−α(Y)] is
best 1 − α CI for Y.
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Alternative method: Conformal quantile regression
[RPC19]

Use qα(·) denote quantile function. Natruallly, [qα(Y),q1−α(Y)] is
best 1 − α CI for Y.
Training I1, holdout I2. For any quantile regression algorithm A
$q = A (

%
(Xi ,Yi) : i ∈ I1

&
)

RCQR
i = max

(
q̂α/2 (Xi) − Yi ,Yi − q̂1−α/2 (Xi)

)
, i ∈ I2

Q1−α is (1 − α)(|I2|+ 1) quantile of
(
RCQR

i : i ∈ I2

)

Return CCQR
split (x) = [q̂α/2 (x) −Q1−α, q̂1−α/2 (x) + Q1−α]

(max{q1 − Y ,Y − q2} ≤ Q ⇒ Y ∈ [q1 −Q ,q2 + Q])
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Use qα(·) denote quantile function. Natruallly, [qα(Y),q1−α(Y)] is
best 1 − α CI for Y.
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$q = A (

%
(Xi ,Yi) : i ∈ I1

&
)
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i = max

(
q̂α/2 (Xi) − Yi ,Yi − q̂1−α/2 (Xi)

)
, i ∈ I2

Q1−α is (1 − α)(|I2|+ 1) quantile of
(
RCQR

i : i ∈ I2

)

Return CCQR
split (x) = [q̂α/2 (x) −Q1−α, q̂1−α/2 (x) + Q1−α]

(max{q1 − Y ,Y − q2} ≤ Q ⇒ Y ∈ [q1 −Q ,q2 + Q])
Marginal coverage:

1 − α ≤ P
!
Yn+1 ∈ CCQR

split (Xn+1)
#
≤ 1 − α+ 2

|I2|+ 2
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Alternative method: Conformal quantile regression
[RPC19]

Use qα(·) denote quantile function. Natruallly, [qα(Y),q1−α(Y)] is
best 1 − α CI for Y.
Training I1, holdout I2. For any quantile regression algorithm A
$q = A (

%
(Xi ,Yi) : i ∈ I1

&
)

RCQR
i = max

(
q̂α/2 (Xi) − Yi ,Yi − q̂1−α/2 (Xi)

)
, i ∈ I2

Q1−α is (1 − α)(|I2|+ 1) quantile of
(
RCQR

i : i ∈ I2

)

Return CCQR
split (x) = [q̂α/2 (x) −Q1−α, q̂1−α/2 (x) + Q1−α]

(max{q1 − Y ,Y − q2} ≤ Q ⇒ Y ∈ [q1 −Q ,q2 + Q])
Marginal coverage:

1 − α ≤ P
!
Yn+1 ∈ CCQR

split (Xn+1)
#
≤ 1 − α+ 2

|I2|+ 2

Benefit: adapt to local variability.
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Conformal prediction under covariate shift: weighted
conformal inference [TFBCR19]

New data may not i.i.d with previous data

(Xi ,Yi)
i.i.d.∼ P = PX × PY |X , i = 1, . . . ,n,

(Xn+1,Yn+1) ∼ *P = *PX × PY |X , independently.

Assume w (Xi) = d*PX (Xi) /dPX (Xi) is known
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i.i.d.∼ P = PX × PY |X , i = 1, . . . ,n,

(Xn+1,Yn+1) ∼ *P = *PX × PY |X , independently.

Assume w (Xi) = d*PX (Xi) /dPX (Xi) is known
no covariate shift: 1 − α quantile of 1

n
"n

i=1 δRi
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Conformal prediction under covariate shift: weighted
conformal inference [TFBCR19]

New data may not i.i.d with previous data

(Xi ,Yi)
i.i.d.∼ P = PX × PY |X , i = 1, . . . ,n,

(Xn+1,Yn+1) ∼ *P = *PX × PY |X , independently.

Assume w (Xi) = d*PX (Xi) /dPX (Xi) is known
no covariate shift: 1 − α quantile of 1

n
"n

i=1 δRi

covariate shift: 1 − α quantile of 1
n
"n

i=1 pw
i δRi

pw
i =

w (Xi)
"n+1

j=1 w
!
Xj

# , i = 1, . . . ,n
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Conformal prediction under covariate shift: weighted
conformal inference [TFBCR19]

New data may not i.i.d with previous data

(Xi ,Yi)
i.i.d.∼ P = PX × PY |X , i = 1, . . . ,n,

(Xn+1,Yn+1) ∼ *P = *PX × PY |X , independently.

Assume w (Xi) = d*PX (Xi) /dPX (Xi) is known
no covariate shift: 1 − α quantile of 1

n
"n

i=1 δRi

covariate shift: 1 − α quantile of 1
n
"n

i=1 pw
i δRi

pw
i =

w (Xi)
"n+1

j=1 w
!
Xj

# , i = 1, . . . ,n

Construction: Cw
split (x) = [$µ(x) −Qw

1−α,$µ(x) + Qw
1−α]

P
!
Yn+1 ∈ Cw

split (Xn+1)
#
≥ 1 − α
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Inference of counterfactuals? Potential outcomes

Unit xi Ti Yi(1) Yi(0) Yobs
i

Treatment Group
1 ! 1 ! x Y1(1)
2 ! 1 ! x Y2(1)
3 ! 1 ! x Y3(1)
4 ! 1 ! x Y4(1)
5 ! 1 ! x Y5(1)

Control Group
6 ! 0 x ! Y6(0)
7 ! 0 x ! Y7(0)
8 ! 0 x ! Y8(0)
9 ! 0 x ! Y9(0)
10 ! 0 x ! Y10(0)
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Inference of counterfactuals? Potential outcomes
[LC20]

Assumption
stable unit treatment values (SUTVA)
(i.i.d.)
unconfoundedness (Y(1),Y(0)) ! T | X

Individual treatment effect(ITE) τi is defined as

τi ≜ Yi(1) − Yi(0).
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Inference of counterfactuals? Potential outcomes
[LC20]

Assumption
stable unit treatment values (SUTVA)
(i.i.d.)
unconfoundedness (Y(1),Y(0)) ! T | X

Individual treatment effect(ITE) τi is defined as

τi ≜ Yi(1) − Yi(0).

τi never observed.
Traditional target: CATE, τ(x) ≜ E[Y(1) − Y(0) | X = x]
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Inference of counterfactuals? Potential outcomes
[LC20]

Assumption
stable unit treatment values (SUTVA)
(i.i.d.)
unconfoundedness (Y(1),Y(0)) ! T | X

Individual treatment effect(ITE) τi is defined as

τi ≜ Yi(1) − Yi(0).

τi never observed.
Traditional target: CATE, τ(x) ≜ E[Y(1) − Y(0) | X = x]
Goal: find interval estimate Ĉt(X), s.t.,

P
!
Y(t) ∈ Ĉt(X) | T = 1

#
≥ 1 − α, (t = 0,1)
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Counterfactual inference

Assign treatment by a coin toss for each subject based on the
propensity score e(x)
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Counterfactual inference

Each subject has potential outcomes (Y(1),Y(0)) and the observed
outcome Yobs
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Counterfactual inference
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Counterfactual inference
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Covariate shift under unconfoundedness Y(1) ! T | X
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Counterfactual inference

Use i.i.d. samples (observed treated units) from PX |T=1 × PY(1)|X to
construct Ĉ1(X) with

P
!
Y(1) ∈ Ĉ1(X)

#
≥ 90% under PX |T=0 × PY(1)|X

Covariate shift w(x) ≜
dPX |T=0

dPX |T=1
(x)
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Counterfactual inference

Use i.i.d. samples (observed treated units) from PX |T=1 × PY(1)|X to
construct Ĉ1(X) with

P
!
Y(1) ∈ Ĉ1(X)

#
≥ 90% under PX |T=0 × PY(1)|X

Covariate shift w(x) ≜
dPX |T=0

dPX |T=1
(x) ∝ 1 − e(x)

e(x)
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Survival data

Observations: {(Xi , T̃i ,∆i)}ni=1 i.i.d.
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Survival data

Observations: {(Xi , T̃i ,∆i)}ni=1 i.i.d.
Event indicator ∆i = I(Ti < Ci) :

T̃i =

+,,-,,.
Ti if ∆i = 1
Ci if ∆i = 0

⇒ T̃i = min(Ti ,Ci)

Conditional independent censoring: T ! C | X
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Survival data

Observations: {(Xi , T̃i ,∆i)}ni=1 i.i.d.
Event indicator ∆i = I(Ti < Ci) :

T̃i =

+,,-,,.
Ti if ∆i = 1
Ci if ∆i = 0

⇒ T̃i = min(Ti ,Ci)

Conditional independent censoring: T ! C | X
Objective:

P(Tn+1 ≥ L̂(Xn+1)) ≥ 1 − α
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Survival data

Observations: {(Xi , T̃i ,∆i)}ni=1 i.i.d.
Event indicator ∆i = I(Ti < Ci) :

T̃i =

+,,-,,.
Ti if ∆i = 1
Ci if ∆i = 0

⇒ T̃i = min(Ti ,Ci)

Conditional independent censoring: T ! C | X
Objective:

P(Tn+1 ≥ L̂(Xn+1)) ≥ 1 − α
Naive solution: Tn+1 ≥ T̃n+1

P(Tn+1 ≥ L̂(Xn+1)) ≥ P(T̃n+1 ≥ L̂(Xn+1)) ≥ 1 − α
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Survival data

Observations: {(Xi , T̃i ,∆i)}ni=1 i.i.d.
Event indicator ∆i = I(Ti < Ci) :

T̃i =

+,,-,,.
Ti if ∆i = 1
Ci if ∆i = 0

⇒ T̃i = min(Ti ,Ci)

Conditional independent censoring: T ! C | X
Objective:

P(Tn+1 ≥ L̂(Xn+1)) ≥ 1 − α
Naive solution: Tn+1 ≥ T̃n+1

P(Tn+1 ≥ L̂(Xn+1)) ≥ P(T̃n+1 ≥ L̂(Xn+1)) ≥ 1 − α
Bad even if we have oracle quantile q̃α(X), qα(x)

P (T ≥ qα(x) | X = x) = 1 − α = P
!
*T ≥ q̃α(x) | X = x

#

= P (T ≥ q̃α(x) | X = x)P (C ≥ q̃α(x) | X = x)
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Survival data

Observations: {(Xi , T̃i ,∆i)}ni=1 i.i.d.
Event indicator ∆i = I(Ti < Ci) :

T̃i =

+,,-,,.
Ti if ∆i = 1
Ci if ∆i = 0

⇒ T̃i = min(Ti ,Ci)

Conditional independent censoring: T ! C | X
Objective:

P(Tn+1 ≥ L̂(Xn+1)) ≥ 1 − α
Naive solution: Tn+1 ≥ T̃n+1

P(Tn+1 ≥ L̂(Xn+1)) ≥ P(T̃n+1 ≥ L̂(Xn+1)) ≥ 1 − α
Bad even if we have oracle quantile q̃α(X), qα(x)

P (T ≥ qα(x) | X = x) = 1 − α = P
!
*T ≥ q̃α(x) | X = x

#

= P (T ≥ q̃α(x) | X = x)P (C ≥ q̃α(x) | X = x)

small censoring time is bad, conservative.
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Treat T as a ”potential outcome” under the ”treatment”
∆ = 1 ?

Event indicator ∆i = I(Ti < Ci) :

T̃i =

+,,-,,.
Ti if ∆i = 1
Ci if ∆i = 0
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Treat T as a ”potential outcome” under the ”treatment”
∆ = 1 ?

Event indicator ∆i = I(Ti < Ci) :

T̃i =

+,,-,,.
Ti if ∆i = 1
Ci if ∆i = 0

Invalid because ”unconfoundedness” does not hold:

(T ,C) ∕⊥ I(T < C) | X

(Xi ,Ti)∆i=1 has shifts in both the covariate distribution and
conditional distribution
What group should we condition on?
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Leveraging the censoring mechanism[CLR23]

Small censoring time is bad→ condition on group with larger
censoring time? E.g. C ≥ c0

Obviously (X ,C ,T)
d
" (X ,C ,T) | C ≥ c0.

P
(X ,!T)|C≥c0

= PX |C≥c0 × P!T |X ,C≥c0

shift in both distribution.
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Consider new censored time *T ∧ c0, where a ∧ b = min{a,b}
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Small censoring time is bad→ condition on group with larger
censoring time? E.g. C ≥ c0

Obviously (X ,C ,T)
d
" (X ,C ,T) | C ≥ c0.

P
(X ,!T)|C≥c0

= PX |C≥c0 × P!T |X ,C≥c0

shift in both distribution.
Consider new censored time *T ∧ c0, where a ∧ b = min{a,b}

P"X ,!T∧c0
#
|C≥c0

= PX |C≥c0 × P!T∧c0|X ,C≥c0

(a)
= PX |C≥c0 × PT∧c0|X ,C≥c0

(b)
= PX |C≥c0 × PT∧c0|X
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Leveraging the censoring mechanism[CLR23]

Small censoring time is bad→ condition on group with larger
censoring time? E.g. C ≥ c0

Obviously (X ,C ,T)
d
" (X ,C ,T) | C ≥ c0.

P
(X ,!T)|C≥c0

= PX |C≥c0 × P!T |X ,C≥c0

shift in both distribution.
Consider new censored time *T ∧ c0, where a ∧ b = min{a,b}

P"X ,!T∧c0
#
|C≥c0

= PX |C≥c0 × P!T∧c0|X ,C≥c0

(a)
= PX |C≥c0 × PT∧c0|X ,C≥c0

(b)
= PX |C≥c0 × PT∧c0|X

We can build a lower bound for Tn+1 ∧ c0 via weighted conformal

dPX

dPX |C≥c0

(x) =
P (C ≥ c0)

P (C ≥ c0 | X = x)
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The essence of conformal method

Non-conformity score(S): how well a sample Z conforms to rest of
data, if S is large, we say that Z is non-conforming or ”strange”.
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The essence of conformal method

Non-conformity score(S): how well a sample Z conforms to rest of
data, if S is large, we say that Z is non-conforming or ”strange”.

E.g.: Sn+1 = |Yn+1 − µ̂(Xn+1)|, large residual→ strange→ small
p-value in hypothesis test.
Conformity score Hypothesis test Conf Interval

Novel conformity score→ different task
Hypothesis test

H0: Xn+1 follow same distribution with observed data[BCL+21]
H0: Two-sample conditional distribution are equal [HL23]
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Testing for outliers with conformal p-value [BCL+21]

D = Dtrain ∪Dcal , |Dtrain | = |Dcal | = n

Clean i.i.d observed data from PX , given many testing data want
to test H0,i : Xi ∼ PX , for any Xi ∈ Dtest
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Clean i.i.d observed data from PX , given many testing data want
to test H0,i : Xi ∼ PX , for any Xi ∈ Dtest

Machine learning tool give a score: ŝ(Xi), p-value is given by

û(marg )(Xi) =
1 +
''''
(
j ∈ Dcal : ŝ

!
Xj

#
≤ ŝ(Xi)

)''''
n + 1

with
P
/
û(marg ) (Xi) ≤ t

0
≤ t under H0,i
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D = Dtrain ∪Dcal , |Dtrain | = |Dcal | = n

Clean i.i.d observed data from PX , given many testing data want
to test H0,i : Xi ∼ PX , for any Xi ∈ Dtest

Machine learning tool give a score: ŝ(Xi), p-value is given by

û(marg )(Xi) =
1 +
''''
(
j ∈ Dcal : ŝ

!
Xj

#
≤ ŝ(Xi)

)''''
n + 1

with
P
/
û(marg ) (Xi) ≤ t

0
≤ t under H0,i

Negative result: global testing can fail:

H0 : X2n+1, . . . ,X2n+m
i.i.d.∼ PX

Positive result: {û(marg)(X2n+1), · · · û(marg)(X2n+m)} are PRDS.
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End of presentation

All models are wrong, but some are (hopefully) useful
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End of presentation

All models are wrong, but some are (hopefully) useful

All models are wrong, but conformal can make them safe and useful!

Thanks!
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