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Motivation

@ Survival analysis, often used in medical research, epidemiology.

DPCA treatment
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/— Survival Time of PBC Patients
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@ Large dimension & insufficient sample.
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o Cox regression model: popular way in survival analysis

library(survival)
coxph(Surv(time, status) ~ X) J
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Motivation

o Cox regression model: popular way in survival analysis

library(survival)
coxph(Surv(time, status) ~ X) J

@ [Zhang et al., 2022] p = 200, n = 400

p/n=0.5
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Introduction of Cox regression model

o Observed data: D = {(X;, Y;,0;)}/_;, Xi € RP is the feature vector,
d; is the censoring indicator, and Y; = min(T;, C;), where T; is the
survival time for an uncensored subject and C; is the censoring time
for a censored subject.
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Introduction of Cox regression model

o Observed data: D = {(X;, Y;,0;)}/_;, Xi € RP is the feature vector,
d; is the censoring indicator, and Y; = min(T;, C;), where T; is the
survival time for an uncensored subject and C; is the censoring time
for a censored subject.

o Cox regression model: semi-parametric

L(B,ho | D) H{exp( ,B) } exp{—exp (X ,3) Ho ( Y)}

i=1

o ho(t) : baseline hazard function, unknown nuisance parameter
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Introduction of Cox regression model

o Observed data: D = {(X;, Y;,0;)}/_;, Xi € RP is the feature vector,
d; is the censoring indicator, and Y; = min(T;, C;), where T; is the
survival time for an uncensored subject and C; is the censoring time
for a censored subject.

o Cox regression model: semi-parametric

L(B,ho | D) H{exp } exp{—exp (X ,8) Ho ( Y)}

o ho(t) : baseline hazard function, unknown nuisance parameter

o Partial likelihood [Cox, 1975]: MPLE maximizes
d;
" e (X18)
PL(B) =
1 { > rer, &P (X13)

where R; := {j : Yj > Y;} is the collection of index for those are risky
at time Y.
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Recap the problem of classical method

@ When dimension is large or insufficient sample, MPLE suffers

@ highly variable
@ not exist
© large bias
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Recap the problem of classical method

@ When dimension is large or insufficient sample, MPLE suffers

@ highly variable
@ not exist
© large bias

@ Similar problems for MLE
Omie = [[f(vil Xx:.6
MLE argmgx( i (i | Xi, ))

o large variability for large p
o MLE may not exist, e.g.: Logistic regression
o large bias
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Related methods to address issues

o Existing strategy for MLE:
o [Huang et al., 2020] proposed class of automatic priors called catalytic
prior for GLM to provide stable estimation in high dimensional model.
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Related methods to address issues

o Existing strategy for MLE:
o [Huang et al., 2020] proposed class of automatic priors called catalytic
prior for GLM to provide stable estimation in high dimensional model.
o Increase 'sample size' by generating synthetic data {(Y,*,X;")},I\i1
n * * M
Obs = {(Yi, Xi)}iy Syn A(Y7 X7)}iza

1

Weihao Li (Department of Statistics, NUS) Dec 6, 2023 6 /27



Related methods to address issues

o Existing strategy for MLE:
o [Huang et al., 2020] proposed class of automatic priors called catalytic
prior for GLM to provide stable estimation in high dimensional model.
o Increase 'sample size' by generating synthetic data {(Y,*,X;")},I\i1

Obs : {(Yi, Xi)}i, Syn - {(Y7. X)),

1

o Catalytic prior based on synthetic data

M /M
reae (6] 7) x (H FOv? | xr,0)>
i=1
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Related methods to address issues

o Existing strategy for MLE:
o [Huang et al., 2020] proposed class of automatic priors called catalytic
prior for GLM to provide stable estimation in high dimensional model.
o Increase 'sample size' by generating synthetic data {(Y,*,X;")},I\i1

Obs : {(Yi, Xi)}i, Syn - {(Y7. X)),

1

o Catalytic prior based on synthetic data
M /M
Teat,m(0 | T) (Hf(\’;* | X7,9)>
i=1

o Posterior distribution:

7T(0 | {(erxl)}:nzl) & <H f(YI ‘ Xi70)> 71't:al*,M(e ‘ T)

n M
x exp{zlog(f(v,- | X5,0)) + 1> log (F (Y7 | xr,e))}

i=1 i=1
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Stable estimation for simpler model

@ Experts focus on several important covariates.
E.g.. thyroid-related diseases—gender, emotional state, age, etc.

1Other type of simpler models are possible
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Stable estimation for simpler model

@ Experts focus on several important covariates.
E.g.. thyroid-related diseases—gender, emotional state, age, etc.
Only fit simpler model with subset of covariates {X1, X2, X3} 1
— ) = (B1, Ba, B3) — predictive distribution g, (y | x)

1Other type of simpler models are possible
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Stable estimation for simpler model

@ Experts focus on several important covariates.
E.g.. thyroid-related diseases—gender, emotional state, age, etc.
Only fit simpler model with subset of covariates {X1, X2, X3} L.
— ) = (B1, Ba, B3) — predictive distribution g, (y | x)

o Create fake data to "increase” sample size. M synthetic data points
{(Y7, X*)}, 1 can be generated according to following strategy:

. iind. « 1 v «
X7~ Q(x), VI X7~g(y ] XT)

1Other type of simpler models are possible
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Stable estimation for simpler model

@ Experts focus on several important covariates.
E.g.. thyroid-related diseases—gender, emotional state, age, etc.
Only fit simpler model with subset of covariates {X1, X2, X3} L.
— ) = (B1, Ba, B3) — predictive distribution g, (y | x)

o Create fake data to "increase” sample size. M synthetic data points
{(Y7, X*)} —, can be generated according to following strategy:

« Qvi.d. . " *
X7~ Q(x), VI X7~g(y ] XT)

@ Now we are able to define catalytic prior for 3

T/M
WcatMO‘T (Hf Y*’X ))

1Other type of simpler models are possible
Weihao Li (Department of Statistics, NUS)
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Generation of synthetic survival data

d.
@ Synthetic covariates: X7 IS

Q(x)
@ Synthetic survival time:

@ Simpler predictive model g(y | X, d, 1)) with 1) can be stably fitted
from the observed data {(X;, Y;, 6 )}, 1 denote the predictive
distribution as g.(y | x, {(X;, Y;,0;)} )

2] YI* ‘ X:k ~ B (y | XT:{(XI" \/,',5,‘)}7:1)
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Generation of synthetic survival data

d.
@ Synthetic covariates: X7 IS

Q(x)
@ Synthetic survival time:

@ Simpler predictive model g(y | X, d, 1)) with 1) can be stably fitted
from the observed data {(X;, Y;, 6 )}, 1 denote the predictive
distribution as g.(y | x, {(X;, Y;,0;)} )

2] YI* ‘ X:k ~ B (y | XT:{(XI" \/,',5,‘)}7:1)

Remark: all synthetic survival subjects are uncensored.
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Generation of synthetic survival data

d.
@ Synthetic covariates: X7 IS

Q(x)

@ Synthetic survival time:

@ Simpler predictive model g(y | X, d, 1)) with 1) can be stably fitted
from the observed data {(X;, Y;, 6 )}, 1 denote the predictive
distribution as g.(y | x, {(X;, Y;,0;)} )

(2] YI* ‘ X:k ~ B (y | XT:{(XI" \/,',5,‘)}7:1)

Remark: all synthetic survival subjects are uncensored.

Example:
© Simpler model:

Ly | {(Xi,Yi,6)} H¢ exp{—VYi}, ¢ >0.

i=1

@ Yi | X} ~ Exp(¥)
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Natural extension: Catalytic prior on (3, hg)

D = {(X;,Y:,8)}0_1, D* = {(X5, V)M,

1

7"'cat,both(,Ba hO) X L(ﬁ, hg(-) | D*)ﬁ
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Natural extension: Catalytic prior on (3, hg)

D = {(X;,Y:,8)}0_1, D* = {(X5, V)M,

1

7"'cat,both(,Ba hO) X L(B, hg(-) | D*)ﬁ

@ Posterior distribution:

Tpost.both(3, ho) o L(B, ho(-) | D) - L(B, ho(-) | D*) %
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Natural extension: Catalytic prior on (3, hg)

D = {(X;,Y:,8)}0_1, D* = {(X5, V)M,

1

7"'cat,both(,Ba hO) X L(B, hg(-) | D*)ﬁ

@ Posterior distribution:

Tpost.both(3, ho) o L(B, ho(-) | D) - L(B, ho(-) | D*) %

Conceptually valid but not able to be incorporated into standard
Bayesian Cox model.
Reason: 3 and hg are prior-dependent
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Natural extension: Catalytic prior on (3, hg)

D = {(X;,Y:,8)}0_1, D* = {(X5, V)M,

1

7"'cat,both(,Ba hO) X L(B, hg(-) | D*)ﬁ

@ Posterior distribution:

Tpost.both(3, ho) o L(B, ho(-) | D) - L(B, ho(-) | D*) %

Conceptually valid but not able to be incorporated into standard
Bayesian Cox model.
Reason: 3 and hg are prior-dependent

e Efficient point estimation for 3: profile hg(-) out
[Murphy and Van der Vaart, 2000]
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Weighted mixture estimator

Algorithm: Compute Weighted Mixture estimator in R
Require: R package survival

Input: D = {(X;, Y;,6:)}_;, D" = {(X}, V7)1 .7 >0
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Weighted mixture estimator

Algorithm: Compute Weighted Mixture estimator in R

Require: R package survival
Input: D = {(X;, Y;,8,)}_,, D" = {( X5, Y/}, ,7>0

@ Combine data:
X < rbind (X, X*)

Y «c(Y,YY)
o« c(6,1)
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Weighted mixture estimator

Algorithm: Compute Weighted Mixture estimator in R

Require: R package survival
Input: D = {(X;, Y;,8,)}_,, D" = {( X5, Y/}, ,7>0

@ Combine data:
X < rbind (X, X*)

Y «c(Y,YY)
o« c(6,1)

@ Compute weight vector:
W < c(rep(1, n), rep(77, M))
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Weighted mixture estimator

Algorithm: Compute Weighted Mixture estimator in R
Require: R package survival
Input: D = {(X;, Y;,8,)}_,, D" = {( X5, Y/}, ,7>0
@ Combine data:
X < rbind (X, X*)
Y «c(Y,YY)
o« c(6,1)
@ Compute weight vector:
W < c(rep(1, n),rep(7;, M))
© Fit proportional hazards regression model with combined data and

weight vector: y
fit <— coxph(Surv(Y,d) ~ X, weights = W)
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Weighted mixture estimator

Algorithm: Compute Weighted Mixture estimator in R
Require: R package survival
Input: D = {(X;, Y;,0)}y, D" = {(X], Y/ )}Ly 7> 0
@ Combine data:
X < rbind (X, X*)
Y «c(Y,YY)
o« c(6,1)
@ Compute weight vector:
W <« c(rep(1, n), rep(ﬁ, M))
© Fit proportional hazards regression model with combined data and
weight vector:
fit < coxph(Surv(Y,d) ~ X, weights = W)
(%) BWM,T = coef(fit)
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Weighted mixture estimator

Algorithm: Compute Weighted Mixture estimator in R
Require: R package survival
Input: D = {(X;, Y;,0)}y, D" = {(X], Y/ )}Ly 7> 0
@ Combine data:
X < rbind (X, X*)
Y «c(Y,YY)
o« c(6,1)
@ Compute weight vector:
W <« c(rep(1, n), rep(ﬁ, M))
© Fit proportional hazards regression model with combined data and
weight vector:
fit < coxph(Surv(Y,d) ~ X, weights = W)
(%) BWM,T = coef(fit)
Property:

° BWM,T is consistent when p is fixed and 7 = o(n).
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Catalytic prior for Cox model on 3

@ Previous catalytic prior for GLM rely on known likelihood function.

o lIssue: ho(t) is unknown nuisance parameter in Cox model
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Catalytic prior for Cox model on 3

@ Previous catalytic prior for GLM rely on known likelihood function.

o lIssue: ho(t) is unknown nuisance parameter in Cox model

7Tcat’,bol’h(ﬁza hO) o€ L(IB7 ho() | D*)ﬁ

_ [H {exp (X'B) ho(y,*)}exp{—exp (x;*’ﬁ)/oi ho(s)dsH

/M

i=1

Weihao Li (Department of Statistics, NUS) Dec 6, 2023 11 /27



Catalytic prior for Cox model on 3

@ Previous catalytic prior for GLM rely on known likelihood function.

@ lIssue: ho(t) is unknown nuisance parameter in Cox model

T/
Wcox,cat(ﬁ | T) OCL (/67 ha_ | {(X:k’ \/I*)}f\il) "

/M

- lﬁ {exp (X7'B) hg } exp {—exp (X;'B) Yi"h{ }

i=1
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Catalytic prior for Cox model on 3

@ Previous catalytic prior for GLM rely on known likelihood function.

@ lIssue: ho(t) is unknown nuisance parameter in Cox model

T/
Wcox,cat(ﬁ ‘ T) OCL (/67 hg | {(XT’ Yl*)}f\il) "

/M

- lﬁ {exp (X7'B) hg } exp {—exp (X;'B) Yi"h{ }

i=1

o User-specific surrogate baseline hazard constant hg >0
@ User-Defined constant: constant hazard, hazard with domain
knowledge
@ Computed in a data driven way.
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Catalytic prior for Cox model on 3

@ Previous catalytic prior for GLM rely on known likelihood function.

@ lIssue: ho(t) is unknown nuisance parameter in Cox model

T/
Wcox,cat(ﬁ ‘ T) OCL (/67 hg | {(XT’ Yl*)}f\il) "

/M

- lﬁ {exp (X7'B) hg } exp {—exp (X;'B) Yi"h{ }

i=1

o User-specific surrogate baseline hazard constant hg >0
@ User-Defined constant: constant hazard, hazard with domain
knowledge
@ Computed in a data driven way.
har acts merely as a surrogate for the nuisance component to
facilitate the construction of our catalytic prior. It does not need to
be correctly specified or unbiased.
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@ Example on hg‘ :

Q =19

i=1

= argmax (H > exp{—wa}> , ¥>0.

Q@ hf =1/Y
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Bayesian Cox model with catalytic prior

/M
7Tcox,cat(/B | T) = L (/Bu ha_ | {(XT7 YI*)}II\il) (1)
Procedure:

e Standard Bayesian Cox model with L(3, hg) as likelihood and default
prior for parameter mo(3) - m(ho)

7"’post(ﬁ: hO | D) X L(,B, hO) : 77'0(/6) : 71'(/70)
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Bayesian Cox model with catalytic prior

/M
7Tcox,cat(/B | T) = L (/Bu ha_ | {(XT7 YI*)}II\il) (1)
Procedure:

e Standard Bayesian Cox model with L(3, hg) as likelihood and default
prior for parameter mo(3) - m(ho)

7"’post(ﬁa hO | D) X L(,B, hO) : 7['0(/8) : 71'(/70)

@ Replace default prior mp(3) on 3 by catalytic prior Eq.(1).

@ Run MCMOC to collect posterior samples.

Weihao Li (Department of Statistics, NUS) Dec 6, 2023 14 /27



Bayesian Cox model with catalytic prior

/M
7Tcox,cat(/B | T) = L (/Bu ha_ | {(XT7 YI*)}f\il) (1)
Procedure:

e Standard Bayesian Cox model with L(3, hg) as likelihood and default
prior for parameter mo(3) - m(ho)

7"’post(ﬁa hO | D) X L(,B, hO) : 7['0(/8) : 71'(/70)

@ Replace default prior mp(3) on 3 by catalytic prior Eq.(1).
@ Run MCMOC to collect posterior samples.
Property:

® Tcox,cat(3 | T) is proper under mild assumption.
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Approximate posterior mode

7rp05t(167 hO ‘ D) = L(,@, hO) : 71'cox,z:at.‘(ﬁ | T) : 7r(hO)
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Approximate posterior mode

7rp05t(167 hO ‘ D) = L(,@, hO) : 71'cox,z:at.‘(ﬁ | T) : 7r(hO)

arg mﬁax Tmargin(B | D) = arg mgx /wpost(ﬂ, ho | D)dhg
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Approximate posterior mode

7rp05t(167 hO ‘ D) = L(B: hO) : Wcox,cat(ﬁ | T) : 7r(hO)

arg mﬁax Tmargin(B | D) = arg mgx /wpost(ﬂ, ho | D)dhg
Logic: from [Sinha, 2003], when 7(hp) is diffuse,

7"'margin(ﬂ | D) ~ PL(B) : 7Tcox,caif(ﬁ | 7-)
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Approximate posterior mode

7rp05t(167 hO ‘ D) = L(B: hO) : Wcox,cat(ﬁ | T) : 7T(h0)

arg mﬁax Tmargin(B | D) = arg mgx /wpost(ﬂ, ho | D)dhg
Logic: from [Sinha, 2003], when 7(hp) is diffuse,

7"'margin(ﬂ | D) ~ PL(B) : 7Tcox,caif(ﬁ | 7-)

Point estimation (Catalytic Regularized estimator)

Ber, =arg max {log PL(B) + Iog Teox.cat(B | 7)} (2)
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Approximate posterior mode

7rp05t(167 hO ‘ D) = L(B: hO) : Wcox,cat(ﬁ | T) : 7T(h0)

arg mﬁax Tmargin(B | D) = arg mgx /wpost(ﬂ, ho | D)dhg
Logic: from [Sinha, 2003], when 7(hp) is diffuse,

7"'margin(ﬂ | D) ~ PL(B) : 7Tcox,caif(ﬁ | 7-)

Point estimation (Catalytic Regularized estimator)
Ber, =arg max {log PL(B) + Iog Teox.cat(B | 7)} (2)

Property:

° ,@CR’T is consistent when p is fixed and 7 = o(n).
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Short summary

Method:
o Full Bayesian Procedure
meoen(B17) = L(Bug 1 {XE )"
o Catalytic Regularized estimator
Ber, =arg max {log PL(B) + log Teox,ca(8 | 7)}
@ Weighted Mixture estimator

Bwwm -

Theory:
® Teox,cat(3 | T) is proper
° BCR,T and BWM’T are consistent.
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Numerical studies

Observed data:

@ Covariates:
Bernoulli(0.1), j=1

I RSt j=2
1, 2 -
X2 J=3
N(0,1), 4<j<p
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Numerical studies

Observed data:

@ Covariates:
Bernoulli(0.1), j=1

I RSt j=2
1, 2 -
X2 J=3
N(0,1), 4<j<p

e n =100, 20% censored subjects.

@ The true regression coefficient vector is set to be
Bo = (4,-4,3,-3,1,_4)//P.

o T; independently from an exponential distribution with a rate
parameter of 0.5 exp(X; Bo).
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Numerical studies

Synthetic data:
e M=1000

@ Synthetic covariates: independent resampling from original covariates
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Numerical studies

Synthetic data:
e M=1000

@ Synthetic covariates: independent resampling from original covariates
Modification:
o half of the sampled X{* will be replaced by i.i.d. random variables draw
from Bernoulli(p = 0.5)—flattening
e continuous covariate (j > 2), half of sampled X" will be replaced by
i.i.d random variables draw from a normal distribution with median and
interquartile range matching to those of the observed covariates.
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Numerical studies

Synthetic data:
e M=1000

@ Synthetic covariates: independent resampling from original covariates
Modification:

o half of the sampled X{* will be replaced by i.i.d. random variables draw
from Bernoulli(p = 0.5)—flattening

e continuous covariate (j > 2), half of sampled X" will be replaced by
i.i.d random variables draw from a normal distribution with median and
interquartile range matching to those of the observed covariates.

~

@ Synthetic survival time: Y* ~ Exp(¢)

1

LW [ {(X:, Vi, 0} y) = [[ ¢ ep {—0Yi}, ¢ >0

i=1
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Numerical studies

Our methods: har =1

7"'cox,caif(ﬁ | T) = L (B? h0+ | {(X77 Yl*)}ll\il>‘r/M

© CRE: catalytic regularized estimator BCR,T

@ WME: weighted mixture estimator By ,

© CPM: posterior mean of MCMC sampler based on catalytic prior
Alternative methods:

B _ | x.Tg_ -
,BA—arggneaﬂé ;5 X;'B—log ) 6; | - \f(B)

JER;

© f(B3) =0 = MPLE: maximum partial likelihood estimator
@ f(B) =||B|l1 = Lasso
9 f(8) = ||BIl5 = Ridge
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Deviance(ﬁo,B) — {g(test)(lgo) _ g(test)(I@;)}

p Methods 1B — Boll> Predictive deviance
MPLE 0.95(0.06) 19.73(1.32)
CRE (CV) 0.63(0.04) 12.87(0.80)
CRE (7 =p) 0.86(0.02) 19.53(0.70)
WME (CV)  0.51(0.02) 12.44(0.75)

20 CPM (CV) 0.79(0.04) 18.82(0.67)
Ridge (CV)  0.58(0.03) 13.07(0.63)
Lasso (CV)  0.75(0.04) 13.42(0.63)
MPLE 4.25(0.21) 103.38(4.99)
CRE (CV)  0.82(0.02) 24.09(0.84)
CRE (r = p) 0.88(0.01) 25.63(0.77)
WME (CV) 0.76(0.02) 23.37(0.82)

40 CPM (CV)  0.84(0.02) 24.63(0.76)
Ridge (CV)  0.94(0.03) 24.53(0.87)
Lasso (CV)  1.19(0.03) 24.06(0.92)

Weihao Li (Department of Statistics, NUS)
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Real data: PBC dataset

o Data: p = 18, DPCA treatment + 17 covariates
o Full Bayesian analysis with 7 = p

Sampling distribution for Coefficient of DPCA
o

8 - -
g
S

N

o -

Frequency

-06 -04 -02 00 02 04 06

95% Credible interval: [-0.28,0.47]. Ineffectiveness of DPCA
treatment has been reported [Locke Il et al., 1996].
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@ Propose Cox catalytic prior on 3 and its corresponding approximate
posterior mode.

@ Derive weighted mixture estimator Using synthetic data to derive.
o Establish properness of prior and consistency of point estimation.

@ Show proposed methods outperform classical MPLE and comparable
with existing regularization method.
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@ Propose Cox catalytic prior on 3 and its corresponding approximate
posterior mode.

@ Derive weighted mixture estimator Using synthetic data to derive.
o Establish properness of prior and consistency of point estimation.
@ Show proposed methods outperform classical MPLE and comparable
with existing regularization method.
Future direction:

@ Otbher statistical inference that involve partial likelihood or complex
nuisance parameters.

@ Other semi-parametric model.

http://arxiv.org/abs/2312.01411
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Thank you!
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Appendix: Prior on 7

If a fully Bayesian perspective on 7 is adopted, we can impose a joint prior
on (7, ) as follows. Given any two positive scalar hyperparameters o and
-, we define a joint catalytic prior for (7,3) as

R (728) o T (7) - L (B {5y )

where I, ,(7) is a function defined as

Faq(T) = rpra-le=(k+17") (4)

and 1
k= sup — logL (,37 hy | {(X7, Yl*)}ll\il) (%)

gere M
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Appendix: Ridge and Lasso

The ridge estimator is defined as follows:

3, = i Xi"TB—1 0 | — \f 6
By = arg max ; B—logy b, (8) (6)

JER;

where 0; = exp(XjT,B) and the penalty term f(3) = ||3||?, assuming that
each entry of the covariates X;'s has been standardized to have zero mean
and unit variance. The Lasso estimator is defined in a similar way as in (6)
but with f(3) = ||3||1. Both the ridge and the Lasso estimates can be
computed using the glmnet package in R [Simon et al., 2011].
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