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Fast learning rates for plug-in classifiers

This article is written by [AUDIBERT and TSYBAKOV, 2007], with a focus on classification problem.
In this article, author derive the rate for excess risk for plug-in estimator under two kind of assumption: one
is standard complexity assumption for function class, another is margin assumption. The problem setting is
following: suppose we have data (X1, y1), · · · (Xn, yn), we want to provide a decision rule f : Rp → {0, 1}
that attain similar performance compared with Bayes optimal classifier, which is given by f∗ = 1{η(X)≥1/2}
where η(X) = P (Y = 1|X) denote the regression function of Y on X, excess risk is defined as

E

f̂n


= ER


f̂n


−R (f∗) = E


|2η(X)− 1|1{f̂n(X) ∕=f∗(X)}



where R(f) := P (Y ∕= f(X)) denotes the misclassification error of decision rule f .

A straightforward way to get f̂n is to first estimate η(·) via any nonparametric regression method(kernel,

local polynomial, orthogonal series, etc.) and we get η̂(·), an plug-in classifier is defined as f̂PI
n (X) =

1{η̂n(X)≥1/2}. And then we adopt following relationship to reduce the excess risk to estimation error of η̂

ER

f̂PI
n


−R (f∗) ≤ 2E


|η̂n(x)− η(x)|PX(dx)

[classification error → L1 estimation error] then based on the complexity assumption (CAR) on function
class (e.g., Holder class and its control on metric entropy H (ε,Σ, Lp) ≤ A∗ε

−ρ ∀ε > 0), we can derive that

sup
P :η∈Σ

E

f̂PI
n


= O


n−β/(2β+d)


, n → ∞

One unsatisfying point is that above relationship is potentially not ”sharp”( it is actually sharp in certain
minimax sense minimax [Yang, 1999]), the argument is that: for plug-in estimator, we actually do not need
to well estimate the regression function, it is sufficient to get a better estimate for optimal decision set, i.e.,
G∗ = {x : f∗(x) = 1} = {x : η(x) ≥ 1/2}. Instead of characterise the smoothness of regression function,
now we put some constraint on complexity of decision set (CAD), i.e., H (ε,G, d△) ≤ A∗ε

−ρ ∀ε > 0, this
assumption is suited to the study of empirical risk minimization (ERM), in [Tsybakov, 2004]

sup
P :G∗∈G

E

f̂ERM
n


= O


n−1/2


, n → ∞

But under margin assumption or low noise assumption, people may use ERM or penalized ERM to construct
estimator that attain fast rates of convergence, that is, rates that are faster than n−1/2,[Koltchinskii, 2006,
TSYBAKOV and VAN DE GEER, 2005, Tsybakov, 2004], we first introduce the margin assumption (MA):

PX(0 < |η(X)− 1/2| ≤ t) ≤ C0t
α ∀t > 0

this condition will favor the classification when α increase, when α = ∞, we have perfect ”separation” for
η(X), that is, η will away from 1/2. With MA, fast classification rates up to n−1 are achievable for ERM

type classifiers. In particular, for every 0 < ρ < 1 and α > 0 there exist ERM type classifiers f̂ERM
n such

that
sup

P :(CAD),(MA)

E

f̂ERM
n


= O


n−(1+α)/(2+α+αρ)


, n → ∞,

Compare above result on rate of convergence for plug-in estimator and ERM type estimator, we may conclude
that plug-in estimator are generally slow, but this article show that this is wrong by proving plug-in estimator
can also achieve fast rate:
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Theorem 1 (Thm 3.3 in paper). Let PΣ denote the class of all probability distributions P on Z such that:
(i) the margin Assumption (MA) is satisfied,
(ii) the regression function η belongs to the Hlder class Σ


β, L,Rd


,

(iii) the strong density assumption on PX is satisfied.

With local polynomial estimator for regression, for any n ≥ 1 the excess risk of the plug-in classifier f̂∗
n =

1{η̂∗
n≥1/2} with bandwidth h = n−1/(2β+d) satisfies

sup
P∈PΣ


ER


f̂∗
n


−R (f∗)


≤ Cn−β(1+α)/(2β+d),

For αβ > d/2, it is faster than n−1/2

For αβ > d, it is faster than n−1, but in this case PΣ is very small, only hold for very particular joint
distribution of (X, Y )

For lower bound, it gives same rate under condition αβ ≤ d. For special case α = ∞, faster rate can be
expected. Suppose there exists t0 > 0 such that PX (0 < |η(X)− 1/2| ≤ t0) = 0. Then

Proposition 2 (Prop 3.7 in paper). There exists a fixed (independent of n ) h > 0 such that for any n ≥ 1

the excess risk of the plug-in classifier f̂∗
n = 1{η̂∗

n≥1/2} with bandwidth h satisfies

sup
P∈PΣ,∞


ER


f̂∗
n


−R (f∗)


≤ C4 exp (−C5n)

Some proof idea and technical notes:
1. To prove the main theorem, they first derive a general lemma : some positive sequence an, for n ≥ 1 and
any δ > 0, and for almost all x w.r.t. PX , we have

sup
P∈P

P⊗n (|η̂n(x)− η(x)| ≥ δ) ≤ C1 exp

−C2anδ
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Consider the plug-in classifier f̂n = 1{η̂n≥1/2}. If all the distributions P ∈ P satisfy the margin Assumption
(MA), we have

sup
P∈P


ER


f̂n


−R (f∗)


≤ Ca−(1+α)/2

n

The first exponential inequality for η̂ will hold for ranges of nonparametric estimator, for example the author
give a example on local polynomial:

sup
P∈P

P⊗n (|η̂∗n(x)− η(x)| ≥ δ) ≤ C1 exp

−C2n

2β/(2β+d)δ2


2. Relate MA with CAR, we first derive some lemma (5.1 in paper): R(f̄)−R (f∗) ≤ 2C0η̄−η1+α
∞ , lemma

(5.2 in paper) R(f̄) − R (f∗) ≤ C1(α, p)η̄ − ηp(1+α)/(p+α)
p then we can apply some result on L∞ and Lp

estimation error

[Problem]:

• How to use nonparametric regression method to estimate η based on binary response.

• How ERM works for classification problem, algorithm aspect.

plug-in estimator: Ĝn = {x : η̂n(x) ≥ 1/2}
ERM classifiers: Ĝn = argminG∈C Rn(G), where Rn(G) = 1

n

n
i=1 I (Yi ∕= I (Xi ∈ G))
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• Relationship between CAR and MA

• Comparison between L∞ and L1/2 bound for nonparametric regression: extra log n for infinite norm
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Statistical inference for model parameters in stochastic gradient descent

[Chen et al., 2020] First of all, this is a inference paper, in the page two of the papers, they mention that
many existing work focus on ’estimation’ aspect without give a reference(remark), this is the motivation for
this paper. I guess there are some AOS work on ’estimation’ based on the SGD.

SGD is an iterative algorithm
xi = xi−1 − ηi∇f (xi−1, ζi)

where ζ denote the random sample from a probability distribution Π and f is the loss function. This
algorithm can output either the last iterate xn (sample size n) or the average iterate x̄n = 1

n

n
i=1 xi. The

method that output x̄n is referred to as averaged SGD (ASGD). As we can see from the iterate itself, it is
of low computational burden since gradient only contains one point, which is independent of sample size.
Furthermore, SGD use one-pass over the data, therefore there is no need for SGD to store the whole datasets,
this is a benefit of storage, which naturally fit in the online settings.

Another extra finding: Origin of the sandwich formula for asymptotic covariance. In parametric model
if we use negative log likelihood function as the loss function, the hessian of F (x) := Eζ∼Πf(x, ζ) at the

truth A = ∇2F (x∗) will match with the expectation of ’gradient square’ S = E

[∇f (x∗, ζ)] [∇f (x∗, ζ)]

T

.

That.is to say S = A−1. But when loss function is not negative log likelihood function, asymptotic normality
will give a statement (use SGD result as an example [Ruppert, 1988, Polyak and Juditsky, 1992]) similar to
those result for estimating equation (estimating equation does not require distribution):

√
n (x̄n − x∗) ⇒ N


0, A−1SA−1



Since this paper focus on the inference, they aim to construct an estimator for A−1SA−1 in an online fashion
(without the need of storing the data). They provide two estimator for A−1SA−1, one is faster in convergence
but need to compute hessian matrix and its inverse (plug-in estimator), another is slow in convergence but
has some storage advantage (Batch-means estimator)
This kind of paper structure can be used for other situation, prove an plug-in estimator are consistent
estimator and then propose another consistent estimator that are computational cheap and require less
storage.

Plug-in estimator A thresholding estimator An ofA based on the sample estimateAn = 1
n

n
i=1 ∇2f (xi−1, ζi).

Note that this is not the standard sample estimate since each term ∇2f (xi−1, ζi) is regarding different SGD
iterates xi−1 (in contrast to a single x̄n ), and thus can be constructed online. Similar construction for

Sn, the asymptotic covariance A−1SA−1 is estimated by A−1
n Sn

A−1
n , which is proven to be a consistent

estimator. This paper focus on fixed dimension situation, dimension dependence is very complicated since
lots of constant depends on dimension.

Batch-means estimator The plug-in estimator require computation of Hessian matrix An and store it,
which is not favoured since built-in tool for SGD does not have this function. The idea of Batch-means
estimator is to construct independent batch and then sample covariance suffices. When n is sufficiently
large, xn is closed to x∗, then ∇F (xn−1) ≈ ∇F (x∗)+∇2F (x∗) (xn−1 − x∗) = A∆n−1, based on relationship
Eq.(1), we have ∆n ≈ (Id − ηnA)∆n−1 + ηnξn. For large j and k, the strength of correlation between ∆j

and ∆k is approximately
k−1

i=j

Id − ηi+1A ≈ exp



−λmin(A)

k−1

i=j

ηi+1







Therefore, the correlations between the batch-means X̄nk
are close to zero if the batch sizes are large enough,

in which case different batch-means can be roughly treated as independent.

Background on SGD analysis : We can add a population term and subtract it,

xn = xn−1 − ηn∇F (xn−1) + ηnξn,

where ξn := ∇F (xn−1) − ∇f (xn−1, ζn) is a martingale difference sequence under assumption (For other
problems, this may not hold since here we estimate model parameter). SGD is driven by population gradient.
Let ∆n := xn − x∗, we have

∆n = ∆n−1 − ηn∇F (xn−1) + ηnξn, (1)

Theory of SGD tell us
√
n · ∆̄n ⇒ N


0, A−1SA−1


if α ∈


1

2
, 1
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Online Sufficient Dimension Reduction Through Sliced Inverse Regression

[Cai et al., 2020] consider estimate the central space in an online fashion, they propose an online updating
for kernel matrix, which is not hard to understand (rank one updating), the problem is that they need to
store the kernel matrix that take O(p2) memory, which p is large, O(p2) can be a problem. Given the stored
kernel matrix, they propose 1. online EVD with SGD 2. online EVD with perturbation method to update
the eigenspace. For both online strategies, they establish the almost sure convergence for estimated column
space.
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Sparse generalized eigenvalue problem

• algorithms based on a convex formulation, for example the Fantope projection and selection (FPS),
overcome this difficulty, but are computationally expensive.

• For sprase PCA/CCA, many papers does not have real data analysis, it is intuitive true because they
are unsupervised learning and hard to measure goodness in real data example.
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Princeton ORFE Deep Learning Theory Summer School

Video, Misha Belkin

• USLLN+ capacity control ⇒ Generalization of ERM solution

E (L (f∗
ERM , y)) ≤ 1

n


L (f∗

ERM (xi) , yi) +O∗


c(X)

n



• Laplace kernel is preferred over Gaussian kernel. Empirical studies suggest that Laplace is very robust.

• Gaussian kernel is essentially linear classifier if noise level is very high. When noise level is very low,
Gaussian kernel is somehow closed to nearest neighbor.

Andrea Montanari : statistical viewpoint of deep learning: introduction and motivation

• R(f ;P) = E

(ynew − f (xnew ))

2

, (ynew ,xnew ) ∼ P. In practice, we use ERM

R̂n(θ) :=
1

n

n

i=1

(yi − f (xi;θ))
2

• gradient flow (ODE) and gradient descent are closed when eps small.

• we want to find a solution to interpolate data, we use the taylor expansion, and if we control and second
order derivative, i.e., control the lipschitz constant of gradient, then by fixed point iteration theorem,
we can show there exist an interpolator of certain form. Moreover, if the second order derivative is
very small, we are actually get a linear function. TO sum up, there exists an interpolator that is well
approximated by replacing the nonlinear model by its linearization.

•
flin (x;θ) := f (x;θ0) + 〈θ − θ0,∇θf (x;θ0)〉 .

• this motivate us to investigate linearized version of empirical risk and test error:

R̂lin ,n(θ) : =
1

n
y − flin,n(θ)22

=
1

n
ỹ −Φ (θ − θ0)22 ,

Rlin (θ) := E

(ynew − flin (xnew ;θ))

2


Andrea Montanari : statistical viewpoint of deep learning:

• under condition of Lipschitz constant Ln, we can get three conclusion. There are many debates over
the assumption when we state such theorem, whether it is satisfied by NN, in his opinion, most of time
not satisfied. But some people do some simulation and experimental data suggest that this may not a
bad assumption. But start with simple linear model is always a good starting point of the analysis.



Dan Roberts and Sho Yaida :Effective theory of DL: beyond the infinite-width limit

• representation learning: for large NN

• Focus on real deep NN, infinite width are not realistic but a simple place to start with. But infinite-
width limit leads to a poor model of DNN in practice, don’t have representation learning. The central
limiting problem is that the input of an infinite number of signals is such that the leveling law of
large numbers completely obscures the subtle correlations between neurons that get amplified over the
course of training for representation learning.

• simplicity of infinite width:

– can only focus on the first derivative of Taylor expansion, and it is irrevelant to the algorithm we
use because training dynamics will be linear in this limit

Andrea Montanari : Third lecture focus on the work: Surprises in High-Dimensional Ridgeless Least Squares
Interpolation. In this work, they consider the linear regression model

yi = 〈β∗, zi〉+ wi, E (wi | zi) = 0, E

w2

i | zi


= τ2

zi ∼ N(0,Σ) ⊥ wi ∼ N

0, τ2


and analyze the excess test wrror of ridge solution

β̂(λ) := arg min
b∈Rp


1

n
y −Zb22 + λb22



where excess test error is the difference between test error and Bayes error, defined as

Rexc (λ;Z,β0,w) := Eznew


β̂(λ), znew


− 〈β∗, znew 〉

2


=
β̂(λ)− β∗


2

Σ
.

Although this ridge problem is ideal, it can reveal some rules behind the two layer NN after we do the Taylor
expansion. We replace the complex feature map Φ by Gaussian design Z

2
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CGMT-Han Qiyang
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inference in HD logistic regression with separated data

Can be used to make slides from her talk.
Model setting: Response variables Y1, . . . , Yn are realisations satifying

P (Yi = 1) =
ex

T
i β∗

1 + ex
T
i β∗ , P (Yi = −1) = 1− P (Yi = 1)

for some unknown β∗ ∈ Rp and covariates x1, . . . , xn ∈ Rp. Let XT = (x1, . . . , xn).

• They study the behaviour of the OLS estimator

β̂0 =

XTX

−1
XTY

assuming that Y consists of realisations from a logistic regression model. Can double descent hold for
logistic regression with square loss

• The OLS estimator β̂0 converges to

β0 =

XTX

−1
XT tanh (Xβ∗/2) .

• Write
tanh (Xβ∗/2) = cXβ∗ + u+∆

where u ∈ Col− Sp(X)⊥, PM = M

MTM

−1
MT for any matrix M and

cXβ∗ = PXβ∗ tanh (Xβ∗/2) , ∆ = (PX − PXβ∗) tanh (Xβ∗/2) .

Then, letting δ =

XTX

−1
XT∆,

β0 = cβ∗ + δ.

β̂0 → β0 = cβ∗ + δ.

• Main result is given by: Let η̂ be a consistent estimator of η = Xβ∗ ∕= 0 satisfying(to make η̂ consistent,
we need to add some sparsity)

max


η̂ − η2
η2

,
η̂ − η2√

n


p→ 0

as p, n → ∞ with p < n. Define

ĉ =
η̂T tanh(η̂/2)

η̂22
, δ̂ =


XTX

−1
XT P̂ tanh(η̂/2),

where P̂ = PX − Pη̂. Finally, let

β̃∗ = ĉ−1

β̂0 − δ̂


.

some theorem:

αT

β̃∗ − β∗



c−1
αT (XTX)

−1
XTΓ1/2


2

d→ N(0, 1),

p−1/2
β̃∗ − β∗


2
= oP (1)
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• Interesting relationship with MLE
When the MLE β̂∗ exists, correcting the least-squares estimator using η̂ = Xβ̂∗ recovers the original
MLE.

In other words,

β̂∗ =
β̂0 − δ̂

ĉ

where

ĉ =
(η̂)T tanh(η̂/2)

η̂22
, δ̂ =


XTX

−1
XT P̂ tanh(η̂/2),

where P̂ = PX − Pη̂.

• Can be used in our paper: compare signal strength estimation, FDP
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